K4-
The Publishers and the Authors will be grateful to
any of the readers of this volume who will kindly call
their attention to any errors of omission or of commis-
sion that they may find therein. It is intended to make
oui* publications standard works of study and reference,
and, to that end, the greatest accuracy is sought. It
rarely happens that the early editions of works of any
size are free from errors; but it is the endeavor of the
Publishers to have them removed immediately upon being
discovered, and it is therefore desired that the Authors
may be aided in their task of revision, from time to time,
by the kindly criticism of their readers.
JOHN WILEY & SONS, Inc.
432 4TH AVENUE.
WORKS OF WILLIAM KENT
PUBLISHED BY
JOHN WILEY & SONS, Inc.
Bookkeeping and Cost Accounting for Fac-
tories.
vii +261 pages. 8M by 10^. Profusely illus-
trated with forms. Cloth, $4.00 net.
The Mechanical Engineers Pocket-Book.
A Reference Book 01 Rules, Tables, Data, and
Formulae, for the Use of Engineers, Mechanics,
and Students. Ninth edition. Thoroughly
revised with the assistance of Robert T. Kent.
xiv+1526 pages, 4 by 6%. Flexible "Fabrikoid"
binding, $5.00 net.
Steam-Boiler Economy
A Treatise on the Theory and Practice of Fuel
Economy in the Operation of Steam-Boilers.
Second edition, 1915. xvii +717 pages, 6 by 9,
287 figures. Cloth, $4.50 net.
Investigating an Industry.
A Scientific Diagnosis of the Diseases of Man-
agement. With an introduction by Henry L.
Gantt, author of •• Work, Wages and Profits."
xi + 126 pages, 5 by 7&. Cloth, $1.00 net.
THE
MECHANICAL ENGINEERS'
POCKET-BOOK.
A REFERENCE-BOOK OF RULES, TABLES,
DATA, AND FORMULA.
WILLIAM KENT, M.E., Sc.D.,
Consulting Engineer.
Member Amer. Soc'y Mechl. Engrs. and Amer. Inst. Mining Engrs.
NINTH EDITION, THOROUGHLY REVISED
WITH THE ASSISTANCE OF
ROBERT THURSTON KENT, M. E.,
Consulting Engineer.
Junior American Society of Mechanical Engineers.
TOTAL I3SJW,
ONE HUNDRED AND THIRTY-FIVE THOUSAND.
NEW YORK
JOHN WILEY & SONS, INC.
LONDON: CHAPMAN & HALL, LIMITED
1916
COPYRIGHT, 1895, 1902, 1910, 1915,
BY
WILLIAM KENT.
Eighth Edition entered at Stationers' Hall.
Composition and Electrotyping by the STANHOPE PRESS, Boston, Mass., and
the PUBLISHERS PRINTING COMPANY, New York.
Printing and Binding by BRAUNWORTH & COMPANY, Brooklyn, N. Y.
PREFACE TO THE NINTH EDITION.
NOVEMBER, 1915.
SINCE the eighth edition was published, five years ago, there have
been notable advances in many branches of engineering, rendering
obsolete portions of the book which at that time were in accord with
practice. In addition, many engineering standards have been changed
during the five-year period, necessitating a thorough revision of many
sections of the work. The absolutely necessary revisions to bring the
book up to date -have involved changes in over 400 pages of the eighth
edition, and the addition of over 150 pages of new matter. The
treatment of many subjects in the earlier edition has been condensed
into smaller space to enable the insertion of the new matter without
increasing the size of the book to unwieldy proportions. Extensive
revisions have been made in the subjects of materials, mechanics,
fans and blowers, heating and ventilation, fuel, steam-boilers and
engines, and steam-turbines. The chapter on machine-shop practice
has been rewritten and doubled in size, and now covers many subjects
which were omitted in earlier editions. The new matter includes
many data on planing, milling, drilling and grinding, together with
an elaborate treatment of the subject of machine-tool driving. The
subject of electrical engineering has been completely rewritten and
brought into agreement with present practice. Of the new tables
added the following are considered of special importance. Square
roots of fifth powers; Four-place logarithms; Standard sizes of welded
steel pipe; Standard pipe flanges; Properties of wire rope; Fire brick
and other refractories; Properties of structural sections and columns;
Chemical standards for iron castings; Flow of air, water and steam;
Analyses and heating values of coals; Rankine efficiency; Cooling
towers; Properties of ammonia; -Power required for driving machine
tools of all types, both singly and in groups; Electric resistance and
conductivity of wires; Street railway installation; Electric lamp char-
acteristics; Illuminating data.
NOTE TO SECOND PRINTING OF THE NINTH
EDITION.
In line with the policy of keeping the book up to date and elimi-
nating all obsolete matter, the section on hydraulic turbines has been
completely rewritten for the second printing of the ninth edition.
The presentation of the theory has been improved, new design con-
stants have been given, and the tables of capacity, etc., represent the
performance of the most recent types of turbines.
MARCH, 1917.
iii
40223,3
IV PREFACE.
ABSTRACT FROM PREFACE TO THE
FIRST EDITION, 1895.
MORE than twenty years ago the author began to follow the advice
given by Nystrom: " Every engineer should make his own pocket-book,
as he proceeds in study and practice, to suit his particular business."
The manuscript pocket-book thus begun, however, soon gave place to
more modern means for disposing of the accumulation of engineering
facts and figures, viz., the index rerum, the scrap-book, the collection of
indexed envelopes, portfolios and boxes, the card catalogue, etc. Four
years ago, at the request of the publishers, the labor was begun of selecting
from this accumulated mass such matter as pertained to mechanical
engineering, and of condensing, digesting, and arranging it in form for
publication. In addition to this, a careful examination was made of the
transactions of engineering societies, and of the most important recent
works on mechanical engineering, in order to fill gaps that might be left
in the original collection, and insure that no important facts had been
overlooked.
Some ideas have been kept in mind during the preparation of the
Pocket-book that will, it is believed, cause it to differ from other works
of its class. In the first place it was considered that the field of mechani-
cal engineering was so great, and the literature of the subject so vast, that
as little space as possible should be given to subjects which especially
belong to civil engineering. While the mechanical engineer must con-
tinually deal with problems which belong properly to civil engineering,
this latter branch is so well covered by Traut wine's " Civil Engineer's
Pocket-book " that any attempt to treat it exhaustively would not only
fill no " long-felt want," but would occupy space which should be given
to mechanical engineering.
Another idea prominently kept in view by the author has been that he
would not assume the position of an " authority " in giving rules and
formulae for designing, but only that of compiler, giving not only the
name of the originator of the rule, where it was known, but also the volume
and page from which it was taken, so that its derivation may be traced
when desired. When different formulas for the same problem have been
found they have been given in contrast, and in many cases examples
have been calculated by each to show the difference between them. In
some cases these differences are quite remarkable, as will be seen under
Safety-valves and Crank-pins. Occasionally the study of these differences
has led to the author's devising a new formula, in which case the deriva-
tion of the formula is given.
Much attention has been paid to the abstracting of data of experiments
from recent periodical literature, and numerous references to other data
are given. In this respect the present work will be found to differ from
other Pocket-books.
The author desires to express his obligation to the many persons who
huve assisted him in the preparation of the work, to manufacturers who
PREFACE. V
have furnished their catalogues and given permission for the use of their
tables, and to many engineers who have contributed original data and
tables. The names of these persons are mentioned in their proper places
in the text, and in all cases it has been endeavored to give credit to whom
credit is due.
WILLIAM KENT.
PREFACE TO THE EIGHTH EDITION.
SEPTEMBER, 1910.
DURING the first ten years following the issue of the first edition of this
book, in 1895, the attempt was made to keep it up to date by the method
of cutting out pages and paragraphs, inserting new ones in their places, by
inserting new pages lettered a, b, c, etc., and by putting some new matter
in an appendix. In this way the book passed to its 7th edition in October,
1904. After 50,000 copies had been printed it was found that the electro-
typed plates were beginning to wear out, so that extensive resetting of type
would soon be necessary. The advances in engineering practice also had
been so great that it was evident that many chapters required to be entirely
rewritten. It was therefore determined to make a thorough revision of the
book, and to reset the type throughout. This has now been accomplished
after four years of hard labor. The size of the book has increased over 300
pages, in spite of all efforts to save space by condensation and elision of
much of the old matter and by resetting many of the tables and formulae
in shorter form. A new style of type for the tables has been designed for
the book, which is believed to be much more easily read than the old.
The thanks of the author are due to many manufacturers who ha^re fur-
nished new tables of materials and machines, and to many engineers who
have made valuable contributions and helpful suggestions. He is especially
indebted to his son, Robert Thurston Kent, M.E., who has done the work
of revising manufacturers' tables of materials and has done practically all
of the revising of the subjects of Compressed Air, Fans and Blowers, Hoist-
ing and Conveying, and Machine Shop.
CONTENTS.
(For Alphabetical Index see page 1479.)
MATHEMATICS.
Arithmetic.
PAGE
Arithmetical and Algebraical Signs 1
Greatest Common Divisor 2
Least Common Multiple
Fractions
Decimals
Table. Decimal Equivalents of Fractions of One Inch 3
Table. Products of Fractions expressed in Decimals
Compound or Denominate Numbers 5
Reduction Descending and Ascending 5
Decimals of a Foot Equivalent to Fractions of an Inch 5
Ratio and Proportion 6
Involution, or Powers of Numbers 7
Table. First Nine Powers of the First Nine Numbers 7
Table. First Forty Powers of 2 8
Evolution. Square Root 8
Cube Root 9
Alligation 9
Permutation 10
Combination 10
Arithmetical Progression 10
Geometrical Progression 11
Percentage, Profit and Loss, Efficiency 12
Interest 12
Discount 13
Compound Interest
Compound Interest Table, 3, 4, 5, and 6 per cent
Equation of Payments >,
Partial Payments 14
Annuities 15
Tables of Amount, Present Values, etc., of Annuities 15
Weights and Measures.
Long Measure 17
Old Land Measure 17
Nautical Measure 17
Square Measure
Solid or Cubic Measure
Liquid Measure
The Miners' Inch
Apothecaries' Fluid Measure
Dry Measure i ~ 19
Shipping Measure
Avoirdupois Weight 19
Troy Weight 19
Apothecaries' Weight 20
To Weigh Correctly on an Incorrect Balance 20
Circular Measure 20
Measure of Time 20
vii
Vlll CONTENTS.
PAGE
Board and Timber Measure 20
Table. Contents in Feet of Joists, Scantlings, and Timber. ... 21
French or Metric Measures 21
British and French Equivalents 22
Metric Conversion Tables 23
Compound Units
of Pressure and Weight 27
of Water, Weight and Bulk 27
of Air, Weight and Volume 27
of Work, Power, and Duty . 27
of Velocity 4 27
Wire and Sheet Metal Gages 28
Circular-mil Wire Gage 29, 30
U. S. Standard Wire and Sheet Gage (1893) 29, 32
Twist-drill and Steel-wire Gages 31
Decimal Gage 32
Algebra.
Addition, Multiplication, etc 33
Powers of Numbers
Parentheses, Division
Simple Equations and Problems
Equations containing two or more Unknown Quantities
Elimination
Quadratic Equations
Theory of Exponents
Binominal Theorem
Geometrical Problems of Construction
of Straight Lines 37
^f Angles 38
of Circles 39
of Triangles
of Squares and Polygons
of the Ellipse 45
of the Parabola
of the Hyperbola
of the Cycloid 50
of the Tractrix or Schiele Anti-friction Curve 50
of the Spiral 51
of Rings inside a Circle '51
of Arc of a Large Circle 51
of the Catenary 52
of the Involute 52
of plotting Angles
Geometrical Propositions 53
Degree of a Railway Curve 54
Mensuration, Plane Surfaces.
Quadrilateral, Parallelogram, etc 54
Trapezium and Trapezoid 54
Triangles 54
Polygons. Table of Polygons 55
Irregular Figures 56
Properties of the Circle 57
Values of TT and its Multiples, etc 57
Relations of arc, chord, etc 58
Relations of circle to inscribed square, etc 59
Formulse for a Circular Curve 59
Sectors and Segments 60
Circular Ring 60
The Ellipse 60
The Helix 61
The Spiral 61
Surfaces and Volumes of Similar Solids 61
CONTENTS. ix
Mensuration, Solid Bodies. PAGE
Prism 62
Pyramid 62
Wedge 62
Rectangular Prismoid 62
Cylinder 62
Cone 62
Sphere 62
Spherical Triangle 63
Spherical Polygon 63
The Prismoid 63
The Prismoidal Formula 63
Polyedron 63
Spherical Zone 64
Spherical Segment 64
Spheroid or Ellipsoid 64
Cylindrical Ring ; 64
Solids of Revolution 64
Spindles 64
Frustum of a Spheroid 64
Parabolic Conoid 65
Volume of a Cask 65
'Irregular Solids 65
Plane Trigonometry.
Solution of Plane Triangles 66
Sine, Tangent, Secant, etc ...'..' 66
Signs of the Trigonometric Functions 67
Trigonometrical Formulae 68
Solution of Plane Right-angled Triangles 69
Solution of Oblique-angled Triangles 69
Analytical Geometry.
Ordinates and Abscissas 70
Equations of a Straight Line, Intersections, etc 70
Equations of the Circle 71
Equations of the Ellipse 71
Equations of the Parabola 72
Equations of the Hyperbola 72
Logarithmic Curves 73
Differential Calculus.
Definitions 73
Differentials of Algebraic Functions 74
Formulae for Differentiating 74
Partial Differentials 75
Integrals 75
Formulae for Integration 75
Integration between Limits 76
Quadrature of a Plane Surface 76
Quadrature of Surfaces of Revolution 77
Cubature of Volumes of Revolution ' 77
Second, Third, etc., Differentials 77
Maclaurin's and Taylor's Theorems 78
Maxima arid Minima 78
Differential of an Exponential Function 79
Logarithms 79
Differential Forms which have Known Integrals 80
Exponential Functions . . 80
Circular Functions 81
The Cycloid 81
Integral Calculus 82
X CONTENTS.
The Slide Bule.
Examples solved by the Slide Rule . . . 82
Logarithmic Ruled Paper.
Plotting on Logarithmic Paper 84
Mathematical Tables.
Formula for Interpolation 86
Reciprocals of Numbers 1 to 2000
Squares, Cubes, Square Roots and Cube Roots from 0.1 to 1600
Squares and Cubes of Decimals 108
Fifth Roots and Fifth Powers 109
Square Roots of Fifth Powers of Pipe Sizes
Circumferences and Areas of Circles Ill
Circumferences of Circles in Feet and Inches from 1 inch to 32
feet 11 inches in diameter
Areas of the Segments of a Circle
Lengths of Circular Arcs, Degrees Given
Lengths of Circular Arcs, Height of Arc Given
Circles and Squares of Equal Area 125
Number of Circles Inscribed within a Large Circle 125
Spheres 126
Square Feet in Plates 3 to 32 feet long and 1 inch wide 128
Gallons in a Number of Cubic Feet
Cubic Feet in a Number of Gallons 130
Contents of Pipes and Cylinders, Cubic Feet and Gallons
Cylindrical Vessels, Tanks, Cisterns, etc 132
Capacities of Rectangular Tanks in Gallons
Number of Barrels in Cylindrical Cisterns and Tanks
Logarithms 135
Table of Logarithms
Hyperbolic Logarithms
Four-place Logarithms of Numbers from 1 to 1000 167
Natural Trigonometric Functions 169
Logarithmic Trigonometric Functions 172
MATERIALS.
Chemical Elements 173
Specific Gravity and Weight of Materials 173
The Hydrometer : 175
Metals, Properties of
Aluminum 177
Antimony 177
Bismuth 178
Cadmium 178
Copper 178
Gold 178
Iridium 178
Iron 178
Lead 178
Magnesium 179
Manganese 179
Mercury : 179
Nickel 179
Platinum 179
Silver 179
Tin 179
Zinc 179
Miscellaneous Materials.
Order of Malleability, etc., of Metals 180
Measures and Weights of Various Materials 180
CONTENTS. XI
PAGE
Formulae and Table for Weight of Rods, Plates, etc 181
Commercial Sizes of Iron and Steel Bars 182
Weights of Iron and Steel Sheets 183
of Iron Bars 184
of Round Steel Bars 185
of Fillets 185
of Round, Square, and Hexagon Steel 186
of Plate Iron 187
of Flat Rolled Iron 188
of Steel Blooms 190
of Roofing Materials 191-196
Snow and Wind Loads on Roofs 191
Roof Construction 191
Specifications for Tin and Terne Plates 194
Corrugated Sheets 194
Weights and Thickness of Cast-iron Pipe 196-199
Weights of Cast-iron Pipe Columns 200
Weight of Open-end Cast-iron Cylinders 200
Standard Sizes of Welded Pipe 201-205
Weight and Bursting Strength of Welded Pipe 205
Tubular Electric Line Poles 206
Protective Coatings for Pipes 206
Valves and Fittings 206-217
Standard Pipe Flanges 208-212
Forged Steel Flanges 211
Standard Hose Couplings 218
Wooden Stave Pipe. . .• 218
Riveted Hydraulic Pipe 219
Riveted Iron Pipes 220
Spiral Riveted Pipe 220
Weight of Steel for Riveted Pipe 221
Bent and Coiled Pipes 221
Flexibility of Pipe Bends 221
Shelby Cold-drawn Steel Tubing 222
Seamless Brass and Copper Tubes 224, 225
Aluminum Tubing 226
Lead and Tin-lined Lead Pipe 226
Iron Pipe Lined with Tin, Lead, Brass, and Copper 227
Weight of Sheet and Bar Brass 228
of Sheet Zinc 228
of Copper and Brass Wire and Plates 229
of Aluminum Sheets, Bars, and Plates 230
of Copper Rods 230
Screw-threads, U. S. Standard 231
Whitworth Screw-threads 232
Limit-gages for Screw-threads . . . . : 232
Automobile Screws and Nuts 233
International Screw-thread 233
Acme Screw-thread 234
Machine Screws, A. S. M. E. Standard 234
Standard Taps 235
Wood Screws 236
Machine Screw Heads 237
Set Screws and Cap Screws 238
Weights of Rivets 238, 239
Shearing Value of Rivets. Bearing Value of Riveted Plates 240
Length of Rivets for Various Grips 241
Lag Screws 241
Weight of Bolts with Square Heads and Nuts 242
Washers .242, 243
Hanger Bolts 243
Turnbuckles 243
Track Bolts 244
Cut Nails 244
Material Required per Mile of Railroad Track 245
Wire Nails 246
Spikes. .,,,,,,,*,, 248
Xii CONTENTS.
PAGE
Wires of Different Metals 248
Steel Wire, Size, Strength, etc 249
Piano Wire 250
Telegraph Wire 250-252
Plow-steel Wire 250, 258
Galvanized Iron Wire 250
Copper Wire, Bare and Insulated 251, 252
Notes on Wire Rope 253
Wire Rope Tables 255-262
Varieties and Uses of Wire Rope 256
Splicing of Wire Ropes 263
Chains and Chain Cables 264
Sizes of Fire Brick 266
Refractoriness of American Fire-brick 268
Slag Bricks and Slag Blocks 268
Magnesia Bricks 269
Fire Clay Analysis 269
Zirconia 270
Asbestos 270
Standard Cross-sections of Materials, for Draftsmen 271
Strength of Materials.
Stress and Strain 272
Elastic Limit 273
Yield Point 273
Modulus of Elasticity 274
Resilience 274
Elastic Limit and Ultimate Stress 275
Repeated Stresses 275
Repeated Shocks 276
Stresses due to Sudden Shocks 278
Tensile Strength 278
Measurement of Elongation 279
Shapes of Test Specimens 280
Increasing Tensile Strength of Bars by Twisting 280
Compressive Strength 281
Columns, Pillars, or Struts 283
Hodgkinson's Formula. Euler's Formula
Gordon's Formula. Rankine's Formula
Wrought-iron Columns 2S5
Built Columns 285-286
The Straight-line Formula 285
Comparison of Column Formulae 286
Tests of Large Built Steel Columns 287
Working Strains in Bridge Members 287
Strength of Cast-iron Columns
Safe Load on Cast-iron Columns 291
Strength of Brackets on Cast-iron Columns 292
Moment of Inertia 293
Radius of Gyration 293
Elements of Usual Sections
Eccentric Loading of Columns 296
Transverse Strength 297
Formulae for Flexure of Beams 297
Safe Loads on Steel Beams 298, 309
Beams 9f Uniform Strength 301
Dimensions and Weights of Structural Steel Sections 302
Allowable Tension in Steel Bars 305
Properties of Rolled Structural Shapes 305
" Steel I-Beams , 307
" Steel Wrought Plates 308
" Corrugated Plates 310
Spacing of Steel I-Beams 311
Properties of Steel Channels 312
" T Shapes 313
CONTENTS. . Xlll
PAGE
Properties of Angles 316
" Z-bars 317
Rivet Spacing for Structural Work 321
Dimensions and Safe Load on Built Steel Columns 323-330
Bethlehem Girder and I-beams and H-columns 331
Torsional Strength 334
Elastic Resistance to Torsion 334
Combined Stresses 335
Stress due toTemperature 335
Strength of Flat Plates 336
Thickness of Flat Cast-iron Plates 336
Strength of Unstayed Flat Surfaces 337
Unbraced Heads of Boilers 337
Strength of Stayed Surfaces 338
Stresses in Steel Plating under Water Pressure 338
Spherical Shells and Domed Heads 339
Thick Hollow Cylinders under Tension 339
Thin Cylinders under Tension 340
Carrying Capacity of Steel Rollers and Balls 340
Resistance of Hollow Cylinders to Collapse 341, 343
Formula for Corrugated Furnaces 342
Hollow Copper Balls 345
Holding. Power of Nails, Spikes, Bolts, and Screws 346
Cut versus Wire Nails 347
Strength of Bolts 347
Initial Strain on Bolts 347
Strength of Chains 348
Stand Pipes and their Design 349
Riveted Steel Water-pipes 351
Kirkaldy's Tests of Materials 352-358
Cast Iron 352
Iron Castings 352
Iron Bars, Forgings, etc 352--.
Steel Rails and Tires 353
Spring Steel, Steel Axles, Shafts 354
Riveted Joints, Welds 355
Copper, Brass, Bronze, etc 356
Wire-rope 356
Wire 357
Ropes, Hemp, and Cotton . . 357
Belting, Canvas 357
Stones 357
Brick, Cement, Wood 358
Tensile Strength of Wire 358
Watertown Testing-machine Tests 359
Riveted Joints 359
Wrought-iron Bars, Compression Tests 359
Steel Eye-bars 360
Wrought-iron Columns 360
Cold Drawn Steel 361
Tests of Steel Angles x . . 362
Shearing Strength 362
Relation of Shearing to Tensile Strength 362
Strength of Iron and Steel Pipe 363
Threading Tests of Pipe 363
Old Tubes used as Columns 363
Methods of Testing Hardness of Metals 364
Holding Power of Boiler-tubes 364
Strength of Glass 365
Strength of Ice 366
Strength of Timber 366
Expansion of Timber 367, 369
Tests of American Woods . 367
Shearing Strength of Woods 367
Copper at High Temperatures 368
Drying of Wood 368
Preservation of Timber « 368
XIV CONTENTS.
PAGE
Copper Castings of High Conductivity 368
Tensile Strength of Rolled Zinc Plates 369
Strength of Brick, Stone, etc. . '. 369
" Lime and Cement Mortar. 372
" Flagging .'.'.' 373
Tests of Portland Cement 373
Moduli of Elasticity of Various Materials 374
Factors of Safety 374
Properties of Cork 377
Vulcanized India-Rubber 378
Specifications for Air Hose 379
Nickel 379
Aliuninum, Properties and Uses 380
Alloys.
Alloys of Copper and Tin, Bronze 384
Alloys of Copper and Zinc, Brass 386
Variation in Strength of Bronze 386
Copper-tin-zinc Alloys 387
Liquation or Separation of Metals 388
Alloys used in Brass Foundries 390
Tobin Bronze 392
Qualities of Miscellaneous Alloys 392
Copper-zinc-iron Alloys 393
' Alloys of Copper, Tin, and Lead 394
Phosphor Bronze 394
Alloys for Casting under Pressure 395
Aluminum Alloys 396
Caution as to Strength of Alloys 398
Alloys of Aluminum, Silicon, and Iron 398
Tungsten-aluminum Alloys 399
The Thermit Process 400
Aluminum-tin Alloys 400
Manganese Alloys 401
Manganese Bronze 401
German Silver 402
Monel Metal 403
Copper-nickel Alloys 403
Alloys of Bismuth .404
Fusible Alloys 404
Bearing Metal Alloys 405
Bearing Metal Practice, 1907 407
White Metal for Engine Bearings 407
Alloys containing Antimony 407
White-metal Alloys 407
Babbitt Metals 407, 408
Type-metal 408
Solders 409
Ropes and Cables.
Strength of Hemp, Iron, and Steel Ropes 410
Rope for Hoisting or Transmission 411
Cordage, Technical Terms of 411
Splicing of Ropes 412
Cargo Hoisting 414
Working Loads for Manila Rope . . 414
Knots 415
Life of Hoisting and Transmission Rope 415
Efficiency of Rope Tackles 415
Springs.
Laminated Steel Springs 417
Helical Steel Springs 418
CONTENTS. XV
PAGE
Carrying Capacity of Springs 419
Elliptical Springs 423
Springs to Resist Torsional Force 423
Phosphor-bronze Springs 424
Chromium-Vanadium Spring Steel 424
Test of a Vanadium Steel Spring 424
Riveted Joints.
Fairbairn's Experiments 424
Loss of Strength by Punching 424
Strength of Perforated Plates 424
Hand versus Hydraulic Riveting 424
Formulae for Pitch of Rivets 427, 434
Proportions of Joints 427
Efficiencies of Joints 428
Diameter of Rivets 429
Shearing Resistance of Rivet Iron and Steel 430
Strength of Riveted Joints 431
Riveting Pressures 435
Tests of Soft Steel Rivets 435
Iron and Steel.
Classification of Iron and Steel 436
Grading of Pig Iron 437
Manufacture of Cast Iron 437
Influence of Silicon Sulphur, Phos. and Mn on Cast Iron 438
Microscopic Constituents • 439
Analyses of Cast Iron 439
Specifications for Pig Iron and Castings 441, 443
Specifications for Cast-iron Pipe 441
Chemical Standards for Castings 441
Strength of Cast Iron 444, 451
Strength in Relation to Cross-section 446, 447
" Semi-steel " 446, 453
Shrinkage of Cast Iron 447
White Iron Converted into Gray 448
Mobility of Molecules of Cast Iron 449
Expansion of Iron by Heat 449, 465
Permanent Expansion of Cast Iron by Heating 449
Castings from Blast Furnace Metal 450
Effect of Cupola Melting 450
Additions of Titanium, etc., to Cast Iron 450, 451
Mixture of Cast Iron with Steel 453
Bessemerized Cast Iron 453
Bad Cast Iron «-. 453
Malleable Cast Iron ! 454
Design of Malleable Castings 457
Specifications of Malleable Iron 457
Strength of Malleable Cast Iron 458
Wrought Iron 459
Chemistry of Wrought Iron 460
Electrolytic Iron 460
Influence of Rolling on Wrought Iron 460
Specifications for Wrought Iron 461
Stay-bolt Iron 462
Tenacity of Iron at High Temperatures 463
Effect of Cold on Strength of Iron 464
Durability of Cast Iron 465
Corrosion of Iron and Steel 466
Corrosion of Iron and Steel Pipes 467
Electrolytic Theory, and Prevention of Corrosion 468
Chrome Paints, Anti-corrosive 469
Corrosion Caused by Stray Electric Currents 470
Electrolytic Corrosion due to Overstrain 470
XVI CONTENTS.
PAGE
Preservative Coatings, Paints, etc 471
Inoxydation Processes, Bower-Barff, etc 472
Aluminum Coatings 473
Galvanizing 473
Sherardizing, Galvanizing by Cementation 474
Lead Coatings 474
Steel.
Manufacture of Steel 475
Crucible, Bessemer, and Open Hearth Steel 475
Relation between Chemical and Physical Properties 476
Electric Conductivity 477
" Armco Ingot Iron " 477
Variation in Strength 477, 478
Bending Tests of Steel 478
Effect of Heat Treatment and of Work 478
Hardening Soft Steel 479
Effect of Cold Rolling 479
Comparison of Full-sized and Small Pieces 480
Recalescence of Steel 480
Critical Point 480
Metallography 480
Burning, Overheating, and Restoring Steel 481
Working Steel at a Blue Heat 482
Oil Tempering and Annealing 482
Brittleness due to Long-continued Heating 483
Influence of Annealing upon Magnetic Capacity 483
Treatment of Structural Steel 483
May Carbon be Burned out of Steel? 485
Effect of Nicking a Bar 485
Dangerous Low Carbon Steel 486
Specific Gravity 486
Occasional Failures 486
Segregation in Ingots and Plates 487
Endurance of Steel under Repeated Stresses 487
Welding of Steel 488
The Thermit Welding Process 488
Oxy-acetylene Welding and Cutting of Metals 488
Hydraulic Forging 488
Fluid-compressed .Steel 488
Steel Castings 489
Crucible Steel 490
Effect of Heat on Gram 491
Heating and Forging 491
Tempering Steel 493
Kinds of Steel used for Different Purposes 494
High-speed Tool Steel
Manganese Steel- 494
Chrome Steel 496
Aluminum Steel 496
Tungsten Steel 496
Nickel Steel 497
Copper Steel 499
Nickel- Vanadium Steel 499
Static and Dynamic Properties of Steel 500
Strength and Fatigue Resistance of Steels 501
Chromium- Vanadium Steel • 502
Heat Treatment of Alloy Steels 502, 503
Specifications for Steel 504-51 1
High-strength Steel for Shipbuilding 507
Fire-box Steel 508
Steel Rails 508
MECHANICS.
Matter, Weight, Mass 511
Force, Unit of Force 512
CONTENTS. XVli
PAGE
Local Weight * 512
Inertia 513
Newton's Laws of Motion 513
Resolution of Forces 513
Parallelogram of Forces 513
Moment of a Force . . 514
Statical Moment, Stability 515
Stability of a Dam 515
Parallel Forces 515
Couples 515
Equilibrium of Forces 516
Center of Gravity 516
Moment of Inertia 517
Centers of Oscillation and Percussion 518
Center and Radius of Gyration 518
The Pendulum 520
Conical Pendulum 520
Centrifugal Force 521
Velocity, Acceleration, Falling Bodies 521
Value of g 522
Angular Velocity 522
Height due to Velocity 523
Parallelogram of Velocities 522
Velocity due to Falling a Given Height 524
Fundamental Equations in Dynamics 525
Force of Acceleration 526
Formulae for Accelerated Motion 527
Motion on Inclined Planes '.- 527
Momentum 527
Work, Energy, Power 528
Work of Acceleration 529
Work of Accelerated Rotation . . 529
Force of a Blow 529
Impact of Bodies 530
Energy of Recoil of Guns 531
Conservation of Energy. . . T 531
Sources of Energy 531
Perpetual Motion 532
Efficiency of a Machine 532
Animal-power, Man-power 532
Man-wheel, Tread Mills 533
Work of a Horse 533
Horse-gin 534
Resistance of Vehicles 534
Elements of Mechanics.
The Lever. . 535
The Bent Lever 536
The Moving Strut 536
The Toggle-joint 536
The Inclined Plane 537
The Wedge 537
The Screw 537
The Cam 537
Efficiency of a Screw 538
Efficiency of Screw Bolts 538
Pulleys or Blocks '. 539
Differential Pulley 539
Wheel and Axle 539
Toothed- wheel Gearing 539
Endless Screw, Worm Gear 540
Differential Windlass 540
Differential Screw 540
Efficiency of a Differential Screw 641
XV1U CONTENTS.
Stresses in Framed Structures.
Cranes and Derricks 541
Shear Poles and Guys 542
King Post Truss or Bridge 543
Queen Post Truss 543
Burr Truss 544
Pratt or Whipple Truss 544
Method of Moments 545
Howe Truss 546
Warren Girder 546
Roof Truss 547
The Economical Angle 548
HEAT.
Thermometers and Pyrometers 549
Centigrade and Fahrenheit degrees compared . 550
Temperature Conversion Table 552
Copper-ball Pyrometer 553
Thermo-electric Pyrometer 554
Temperatures in Furnaces 554
Seger's Fire-clay Pyrometer 555
Wiborgh Air Pyrometer 655
Mesure and Nouel's Pyrometer 556
Uehling and Steinbart Pyrometer 557
Air- thermometer 557
High Temperatures Judged by Color 558
Boiling-points of Substances 559
Melting-points 559
Unit of Heat 560
Mechanical Equivalent of Heat 560
Heat of Combustion 560
Heat Absorbed by Decomposition 561
Specific Heat 562
Thermal Capacity of Gases 564
Expansion by Heat 565
Absolute Temperature, Absolute Zero 567
Latent Heat of Fusion §68
Latent Heat of Evaporation 568
Total Heat of Evaporation 569
Evaporation and Drying 569
Evaporation from Reservoirs • 569
Evaporation by the Multiple System 570
Resistance to Boiling * . . 570
Manufacture of Salt 570
Solubility of Salt 571
Salt Contents of Brines 571
Concentration of Sugar Solutions 572
Evaporating by Exhaust Steam 572
Drying in Vacuum 573
Driers and Drying 574
Design of Drying Apparatus 576
Humidity Table 577
Radiation of Heat 578
Black-body Radiation 579
Conduction and Convection of Heat 579
Rate of External Conduction 580
Heat Conduction of Insulating Materials 581
Heat Resistance, Reciprocal of Heat Conductivity 582
Steam-pipe Coverings 584
Transmission through Plates 587
Transmission in Condenser Tubes 588
Transmission of Heat in Feed-water Heaters 590
Transmission through Cast-iron Plates 591
Heating Water by Steam Coils 591
Transmission from Air or Gases to Water 592
CONTENTS. XIX
PAGE
Transmission from Flame to Water 593
Cooling of Air 594
Transmission from Steam or Hot Water to Air 595
Thermodynamics 597
Entropy 599
Reversed Carnot Cycle, Refrigeration . . , 600
Principal Equations of a Perfect Gas 600
Construction of the Curve PV« = C 602
Temperature-Entropy Diagram of Water and Steam 602
PHYSICAL PROPERTIES OF GASES.
Expansion of Gases 603
Boyle and Marriotte's Law 603
Law of Charles, Avogadro's Law 604
Saturation Point of Vapors 604
Law of Gaseous Pressure 604
Flow of Gases 605
Absorption by Liquids 605
Liquefaction of Gases, Liquid Air 605
AIR.
Properties of Air 606
Barometric Pressures 606
Air-manometer 607
Conversion Table for Air Pressures 607
Pressure at Different Altitudes 607, 609
Leveling by the Barometer and by Boiling Water 607
To find Difference in Altitude 608
Weight of Air at Different Pressures and Temperatures 609
Moisture in Atmosphere 609, 611
Humidity Table 610
Weight of Air and Mixtures of Air and Vapor 610, 613
Specific Heat of Air 614
Flow of Air.
Flow of Air through Orifices 615
Flow of Air in Pipes 617
Tables of Flow of Air 622, 623
Effects of Bends in Pipe 624
Anemometer Measurements 624
Equalization of Pipes 625
Wind.
Force of the Wind 626
Wind Pressure in Storms 627
Windmills 627
Capacity of Windmills 629
Economy of Windmills 630
Electric Power from Windmills 632
Compressed Air.
Heating of Air by Compression 632
Loss of Energy in Compressed Air 632
Loss due to Heating 633
Work of Adiabatic Compression of Air 634
Compound Air-compression 635
XX CONTENTS.
PAGE
Mean Effective Pressures 635, 636
Horse-power Required for Compression 637
Compressed-air Engines 638
Mean and Terminal Pressures 638
Air-compression at Altitudes 639
Popp Compressed-air System 639
Small Compressed-air Motors 640
Efficiency of Air-heating Stoves 640
Efficiency of Compressed-air Transmission 640
Efficiency of Compressed-air Engines 640
Air-compressors .- 641
Tests of Air compressors 643
Steam Required to Compress 100 Cu. Ft. of Air. 644
Requirements of Rock-drills 645
Compressed Air for Pumping Plants 645
Compressed Air for Hoisting Engines 646
Practical Results with Air Transmission 647
Effect of Intake Temperature 647
Compressed-air Motors with Return Circuit 648
Intercoolers for Air-compressors 64.8
Centrifugal Air-compressors 648
High-pressure Centrifugal Fans 649
Test of a Hydraulic Air-compressor 650
Mekarski Compressed-air Tramways 652
Compressed Air Working Pumps in Mines . , 652
Compressed Air for Street Railways 652
Fans and Blowers.
Centrifugal Fans 653
Best Proportions of Fans 653
Pressure due to Velocity 653
Blast Area or Capacity Area 655
Pressure Characteristics of Fans 655
Quantity of Air Delivered 655
Efficiency of Fans and Positive Blowers 657
Tables of Centrifugal Fans t 658-666
Effect of Resistance on Capacity of Fans 664
Sirocco or Multivane Fans '664
Methods of Testing Fans 667
Horse-power of a Fan 668
Pitot Tube Measurements 669
Thomas Electric Air and Gas Meter 669
Flow of Air through an Orifice 670
Diameter of Blast-pipes 670
Centrifugal Ventilators for Mines 672
Experiments on Mine Ventilators 673
Disk Fans » 675
Efficiency of Disk Fans 676
Positive Rotary Blowers 677
Steam-jet Blowers and Exhausters 679
Blowing Engines 680
HEATING AND VENTILATION.
Ventilation 681
Quantity of Air Discharged through a Ventilating Duct 683
Heating and Ventilating of Large Buildings 684
Comfortable Temperatures and Humidities 685
Carbon Dioxide Allowable in Factories 685
Standards of Ventilation 686
Air Washing 687
Contamination of Air 687
Standards for Calculating Heating Problems 687
CONTENTS. XXI
PAGE
Heating Value of Coal 687
Heat Transmission through Walls, etc 688
Allowance for Exposure and Leakage 689
Heating by Hot-air Furnaces . 690
Carrying Capacity of Air-pipes 691
Volume of Air at Different Temperatures 692
Sizes of Pipes Used in Furnace Heating 692
Furnace Heating with Forced Air Supply 693
Rated Capacity of Boilers for House Heating 693
Capacity of Grate-surface 694
Steam Heating, Rating of Boilers 694
Testing Cast-iron Heating Boilers 696
Proportioning House Heating Boilers 696
Coefficient of Transmission in Direct Radiation 697
Heat Transmitted in Indirect Radiation 698
Short Rules for Computing Radiating Surface 698
Carrying Capacity of Steam Pipes in Low Pressure .Heating .... 698
Proportioning Pipes to Radiating Surface 700
Sizes of Pipes in Steam Heating Plants 701
Resistance of Fittings 701
Removal of Air, Vacuum Systems 702
Overhead Steam-pipes 702
Steam-consumption in Car-heating 702
Heating a Greenhouse by Steam 702
Heating a Greenhouse by Hot Water 703
Hot-water Heating 703
Velocity of Flow in Hot- water Heating 703
Sizes of Pipe for Hot- water Heating 704
Sizes of Flow and Return Pipes 705
Heating by Hot-water, with Forced Circulation 707
Corrosion of Pipe in Hot- water Heating 708
Blower System of Heating and Ventilating 708
Advantages and Disadvantages of the Plenum System 708
Heat Radiated from Coils in the Blower System 708
Test of Cast-iron Heaters for Hot-blast Work 709
Factory Heating by the Fan System 710
Artificial Cooling of Air 710
Capacities of Fans for Hot-blast Heating 711
Relative Efficiency of Fans and Heated Chimneys 712
Heating a Building to 70° F 712
Heating by Electricity 713
Mine- ventilation 714
Friction of Air in Underground Passages 714
Equivalent Orifices - 715
WATER.
Expansion of Water 716
Weight of Water at Different Temperatures. 716, 717
Pressure of Water due to its Weight 718, 719
Head Corresponding to Pressures 718
Buoyancy 719
Boiling-point 719
Freezing-point 719
Sea-water 719
Ice and Snow 720
Specific Heat of Water 720
Compressibility of Water '. . . 720
Impurities of Water 720
Causes of Incrustation 721
Means for Preventing Incrustation 721
Analyses of Boiler-scale 722
Hardness of Water 723
Purifying Feed-water 723
Softening Hard Water 724
XX11 CONTENTS.
Hydraulics. Flow of Water. PAGE
Formulae for Discharge through Orifices and Weirs 726
Flow of Water from Orifices 727
Flow in Open and Closed Channels 728
General Formulae for Flow . . . : 728
Chezy's Formula 728
Values of the Coefficient c 728, 732
Table, Fall in_Feet per mile, etc 729
Values of \/r for Circular Pipes 730
Kutter's Formula 730
D'Arcy's Formula 732
Values of a \/r for Chezy's Formula 733
Values of the Coefficient of Friction 734
Loss of Head 735
Resistance at the Inlet of a pipe 735
Exponential Formulae, Williams' and Hazen's Tables 736
Short Formulas 737
Flow of Water in a 20-inch Pipe , 737
Coefficients for Reducing H. and W. to Chezy's Formula 737
Tables of Flow of Water in Circular Pipes 738-743
Flow of Water in Riveted Pipes 743
Long Pipe Lines 743
Flow of Water in House-service Pipes 744
Friction Loss in Clean Cast-iron Pipe 745
Approximate Hydraulic Formulae 746
Compound Pipes, and Pipes with Branches 746
Rifled Pipes for Conveying Oils 746
Effect of Bend and Curves 747
Loss of Pressure Caused by Valves, etc 747, 748
Hydraulic Grade-line 748
Air-bound Pipes 748
Water Hammer 749
Vertical Jets 749
Water Delivered through Meters 749
Price Charged for Water in Cities 749
Fire Streams 749
Hydrant Pressures Required with Different Lengths and Sizes of
Hose 750
Pump Inspection Table 751
Pipe Sizes for Ordinary Fire Streams 752
Friction Losses in Hose 752
Rated Capacity of Steam Fire-engines 752
Flow of Water through Nozzles 753
The Siphon 754
Velocity of Water in Open Channels 755
Mean Surface and Bottom Velocities 755
Safe Bottom and Mean Velocities 755
Resistance of Soil to Erosion 755
Abrading and Transporting Power of Water 755
Frictional Resistance of Surfaces Moved in Water 756
Grade of Sewers 757
Measurement of Flowing Water 757
Piezometer 757
Pitot Tube Gauge
Maximum and Mean Velocities in Pipes. 758
The Venturi Meter 758
Measurement of Discharge by Means of Nozzles 759
The Lea V-notch Recording Meter 759
Flow through Rectangular Orifices 760
Measurement of an Open Stream 760
Miners' Inch Measurements 761
Flow of Water over Weirs 762
Francis's Formica for Weirs 762
Weir Table 763
Bazin's Experiments 763
The Cippoleti, or Trapezoidal Weir 764
The Triangular Weir :...... 764
CONTENTS. xxiii
WATER-POWER.
Power of a Fall of Water 765
Horse-power of a Running Stream 765
Current Motors 765
Bernouilli's Theorem 765
Maximum Efficiency of a Long Conduit 766
Mill-power . 766
Value of Water-power 76(j
Water Wheels. Hydraulic Turbines.
Theory of Turbines 768
Determination of Dimensions of Turbine Runners 769A
Comparison of Formulae for Dimensions of Turbines 769A
Comparison of American High Speed Runners 770
Type Characteristics of Turbines 770
Specific Discharge 770B
Use of Type Characteristics to Determine Size and Type of
Turbines 770B
Classes of Radial Inward Flow Turbines 771
Estimating Weight of Turbines 771A
Selection of Turbines 771A
Eifficiency of Turbine wheels 771s
Relation of Efficiency and Water Consumption to Speed ...... 772
Tests at the Philadelphia Exposition 772
Relation of Gare Openings to Efficiency 773
Tests of Turbine Discharge by Salt Solution 774'
Efficiency Tables for Turbines 776-777
Draft Tubes 778
Recent Turbine Practice 778
Some Large Turbines 779
The Fall-increaser for Turbines 780
Tangential or Impulse Water Wheels.-
The Pelton Water Wheel 780
Considerations in the Choice of a Tangential Wheel 781
Control of Tangential Water Wheels 781
Efficiency of the Doble Nozzle 782
Tests of a 12-inch Doble Motor 782
Water-power Plants Operating under High Pressures 782
Amount of Water Required to Develop a Given Horse-Power . 783
Formulae for Calculating the Power of Jet Water Wheels 784
Tangential Water-wheel Table 787
The Power of Ocean Waves.
Energy of Deep Sea Waves 786
Utilization of Tidal Power 787
PUMPS AND PUMPING ENGINES.
Theoretical Capacity of a Pump 788
Depth of Suction 788
The Deane Pump 7X9
Sizes of Direct-acting Pumps 789, 791
Amount of Water Raised by a Single-acting Lift-pump 790
Proportioning the Steam-cylinder of a Direct-acting Pump 790
Speed of Water through Pipes and Pump-passages 790
Efficiency of Small Pumps 790
The Worthington Duplex Pump 791
Speed of Piston 791-792
Speed of Water through Valves 792
Underwriters' Pumps, Standard Sizes 792
Boiler-feed Pumps 792
Pump Valves 793
The Worthington High-duty Pumping PJngine 793
CONTENTS.
The d'Auria Pumping Engine 793
A 72,000,000-Gallon Pumping Engine 793
The Screw Pumping Engine 794
Finance of Pumping Engine Economy 794
Cost of Pumping 1000 Gallons per Minute 795
Centrifugal Pumps 796
Design of a Four-stage Turbine Pump 797
Relation of Peripheral Speed to Head 797
Tests of De Laval Centrifugal Pump 798
A High-duty Centrifugal Pump 801
Rotary Pumps 801
Tests of Centrifugal and Rotary Pumps 802
Duty Trials of Pumping Engines 802
Leakage Tests of Pumps 803
Notable High-duty Pump Records 805
Vacuum Pumps 806
The Pulsometer 806
The Jet Pump 807
The Injector 807
Pumping by Compressed Air 808
Gas-engine Pumps ; The Humphrey Gas Pump 808
Air-lift Pump 808
Air-lifts for Deep Oil-wells 809
The Hydraulic Ram 810
Quantity of Water Delivered by the Hydraulic Ram 810
Hydraulic Pressure Transmission.
Energy of Water under Pressure 812
Efficiency of Apparatus 812
Hydraulic Presses 813
Hydraulic Power in London 814
Hydraulic Riveting Machines 814
Hydraulic Forging 814
Hydraulic Engine 815
FUEL.
Theory of Combustion 816
Analyses of the Gases of Combustion 817
Temperature of the Fire 818
Classification of Solid Fuels 818
Classification of Coals 819
Analyses of Coals 820
Caking and Non-Caking Coals 820
Cannel Coals 821
Rhode Island Graphitic Anthracite 821
Analysis and Heating Value of Coals 821-828
Approximate Heating Values 822
Lord and Haas's Tests 823
Sizes of Anthracite Coal 823
Space occupied by Anthracite 823
Bernice Basin, Pa., Coal 824
Connellsville Coal and Coke 824
Bituminous Coals of the Western States 824
Analysis of Foreign Coals 825
Sampling Coal for Analyses 825
Relative Value of Steam Coals — 826
Calorimetric Tests of Coals 826
Classified Lists of Coals 828-830
Purchase of Coal Under Specifications 830
Weathering of Coal 830
Pressed Fuel 831
Spontaneous Combustion of Coal 832
Coke 832
Experiments in Coking 833
Coal Washing 833
CONTENTS. XXV
PAGE
Recovery of By-products in Coke Manufacture 833
Generation of Steam from the Waste Heat and Gases from Coke-
ovens 834
Products of the Distillation of Coal 834
Wood as Fuel 835
Heating Value of Wood 835
Composition of Wood 835
Charcoal 836
Yield of Charcoal from a Cord of Wood 836
Consumption of Charcoal in Blast Furnaces 837
Absorption of Water and of Gases by Charcoal 837
Miscellaneous Solid Fuels 837
Dust-fuel — Dust Explosions 837
Peat or Turf 838
Sawdust as Fuel 838
Wet Tan-bark as Fuel 838
Straw as Fuel 839
Bagasse as Fuel in Sugar Manufacture 839
Liquid Fuel.
Products of Distillation of Petroleum 840
Lima Petroleum 840
Value of Petroleum as Fuel 840
Fuel Oil Burners 842
Specifications for Purchase of Fuel Oil 843
Alcohol as Fuel 843
Specific Gravity of Ethyl Alcohol 844
Vapor Pressures of Saturation of Alcohol and other Liquids .... 844
Fuel Gas.
Carbon Gas 845
Anthracite Gas 845
Bituminous Gas 846
Water Gas 846
Natural Gas in Ohio and Indiana 847
Natural Gas as a Fuel for Boilers 847
Producer-gas from One Ton of Coal 848
Combustion of Producer-gas 849
Proportions of Gas Producers and Scrubbers 849
Gas Producer Practice 851
Capacity of Producers 851
High Temperature Required for Production of CO 852
The Mond Gas Producer 852
Relative Efficiency of Different Coals in Gas-engine Tests 853
Use of Steam in Producers and Boiler Furnaces 854
Gas Analyses by Volume and by Weight 854
Gas Fuel for Small Furnaces 854
Blast-furnace Gas 855
Acetylene and Calcium Carbide.
Acetylene 855
Calcium Carbide 856
Acetylene Generators and Burners 857
The Acetylene Blowpipe 857
Ignition Temperature of Gases 858
Illuminating Gas.
Coal-gas 858
Water-gas 858
Analyses of Water-gas and Coal-gas 860
Calorific Equivalents of Constituents 860
Efficiency of a Water-gas Plant 861
Space Required for a Water-gas Plant 862
Fuel- value of Illuminating Gas 863
XXVI CONTENTS.
PAGE
Flow of Gas in Pipes. **»»,» 864-866
Services for Lamps 864
Factors for Reducing Volumes of Gas 865
STEAM.
Temperature and Pressure 867
Total Heat 867
Latent Heat of Steam 867
Specific Heat of Saturated -Steam 867
The Mechanical Equivalent of Heat 868
Pressure of Saturated Steam 868
Volume of Saturated Steam 868
Specific Heat of Superheated Steam 869
Specific Density of Gaseous Steam 870
Table of the Properties of Saturated Steam 871-874
Table of the Properties of Superheated Steam 874, 875
Flow of Steam.
Flow of Steam through a Nozzle 876
Napier's Approximate Rule 876
Flow of Steam in Pipes 877
Flow of Steam in Long Pipes, Ledoux's Formula 877
Table of Flow of Steam in Pipes 878
Carrying Capacity of Extra Heavy Steam Pipes 879
Resistance to Flow by Bends, Valves, etc 879
Sizes of Steam-pipes for Stationary Engines 879
Sizes of Steam-pipes for Marine Engines 880
Proportioning Pipes for Minimum Loss by Radiation and Friction 880
Available Maximum Efficiency of Expanded Steam 881
Steam-pipes.
Bursting-tests of Copper Steam-pipes 882
Failure of a Copper Steam-pipe 882
Wire-wound Steam-pipes 882
Materials for Pipes and Valves for Superheated Steam 882
Riveted Steel Steam-pipes 883
Valves in Steam-pipes 883
The Steam Loop 883
Loss from an Uncovered Steam-pipe 884
Condensation in an Underground Pipe Line 884
Steam Receivers in Pipe Lines 884
Equation of Pipes 884
Identification of Power House Piping by Colors 885
THE STEAM-BOILER.
The Horse-power of a Steam-boiler 885
Measures for Comparing the Duty of Boilers 886
Unit of Evaporation 886
Steam-boiler Proportions 887
Heating-surface 887
Horse-power, Builders' Rating 888
Grate-surface 888
Areas of Flues 889
Air-passages Through Grate-bars 889
Performance of Boilers 889
Conditions which Secure Economy 890
Air Leakage in Boiler Settings 891
Efficiency of a Boiler 891
Autographic CO2 Recorders 891
Relation of Efficiency to Rate of Driving, Air Supply, etc 893
Effect of Quality of Coal upon Efficiency 895
Effect of Imperfect Combustions and Excess Air Supply 896
Theoretical Efficiency with Pittsburgh Coal 896
CONTENTS. XXVII
/
The Straight Line Formula for Efficiency 896
High Rates of Evaporation 898
Boilers Using Waste Gases 898
Maximum Efficiencies at Different Rates of Driving 898
Rules for Conducting Boiler Tests 899
Heat Balance in Boiler Tests 907
Factors of Evaporation 908
Strength of Steam-boilers.
Rules for Construction 908
Shell-plate Formulae 913
Efficiency of Riveted Joints 914
Loads Allowed on Stays 916
Holding Power of Boiler Tubes 916
Safe-working Pressures 918
Boiler Attachments, Furnaces, etc.
Fusible Plugs 2 918
Steam Domes 918
Mechanical Stokers 918
The Hawley Down-draught Furnace 919
Under-feed Stokers 919
Smoke Prevention 920
Burning Illinois Coal without Smoke 921
Conditions of Smoke Prevention 922
Forced Combustion 923
Fuel Economizers 924
Thermal Storage 927
Incrustation and Corrosion 927
Boiler-scale Compounds 929
Removal of Hard Scale 930
Corrosion in Marine Boilers 930
Use of Zinc '. 931
Effect of Deposit on Flues 931
Dangerous Boilers 932
Safety-valves.
Rules for Area of Safety-valves 932
Spring-loaded Safety-valves 933
Safety Valves for Locomotives 935
The Injector.
Equation of the Injector 936
Performance of Injectors 937
Boiler-feeding Pumps 937
Feed-water Heaters.
Percentage of Saving Due to Use of Heaters 938
Strains Caused by Cold Feed-water 939
Calculation of Surface of Heaters and^Condensers 939
Open vs. Closed Feed-water Heaters 940
Steam Separators.
Efficiency of Steam Separators 941
Determination of Moisture in Steam.
Steam Calorimeters 942
Coil Calorimeter 942
Throttling Calorimeters 943
Separating Calorimeters 943
XXV111 CONTENTS.
PAGE
Identification of Dry Steam 944
Usual Amount of Moisture in Steam 944
Chimneys.
Chimney Draught Theory 944
Force of Intensity of Draught 945
Rate of Combustion Due to Height of Chimney 947
High Chimneys not Necessary 948
Height of Chimneys Required for Different Fuels 948
Protection of Chimney from Lightning 949
Table of Size of Chimneys 950
Velocity of Gas in Chimneys 951
Size of Chimneys for Oil Fuel 951
Chimneys with Forced Draught 952
Largest Chimney in the World 952
Some Tall Brick Chimneys 953, 954
Stability of Chimneys 954
Steel Chimneys 956
Reinforced Concrete Chimneys 958
Sheet-iron Chimneys 958
THE STEAM ENGINE.
• Expansion of Steam ; 959
Mean and Terminal Absolute Pressures 960
Calculation of Mean Effective Pressure 961
Mechanical Energy of Steam Expanded Adiabatically 963
Measures for Comparing the Duty of Engines 963
Efficiency, Thermal Units per Minute 964
Real Ratio of Expansion 965
Effect of Compression 965
Clearance in Low- and High-speed Engines 966
Cylinder-condensation 966
Water-consumption of Automatic Cut-off Engines 967
Experiments on Cylinder-condensation 967
Indicator Diagrams 968
Errors of Indicators 969
Pendulum Indicator Rig 969
The Manograph 969
The Lea Continuous Recorder 970
Indicated Horse-power 970
Rules for Estimating Horse-power 970
Horse-power Constants 971
Table of Engine Constants 972
To Draw Clearance on Indicator-diagram 974
To Draw Hyperbola Curve on Indicator-diagram 974
Theoretical Water Consumption 975
Leakage of Steam 976
Compound Engines.
Advantages of Compounding 976
Woolf and Receiver Types of Engines 977
Combined Diagrams > 979
Proportions of Cylinders in Compound Engines 980
Receiver Space 980
Formula for Calculating Work of Steam 981
Calculation of Diameters of Cylinders 982
Triple-expansion Engines 983
Proportions of Cylinders 983
Formulae for Proportioning Cylinders 983
Types of Three-stage Expansion Engines 985
Sequence of Cranks 986
Velocity of Steam through Passages , 986
A Double-tandem Triple-expansion Engine 986
Quadruple-expansion Engines 986
CONTENTS. XXIX
Steam-engine Economy.
JrALriU
Economic Performance of Steam-engines 987
Feed- water Consumption of Different Types 987
Sizes and Calculated Performances of Vertical High-speed Engine 988
The Willans Law, Steam Consumption at Different Loads 991
Relative Economy of Engines under Variable Loads 992
Steam Consumption of Various Sizes 992
Steam Consumption in Small Engines 993
Steam Consumption at Various Speeds '993
Capacity and Economy of Steam Fire Engines 993
Economy Tests of High-speed Engines 994
Limitation of Engine Speed 995
British High-speed Engines 995
Advantage of High Initial and Low-back Pressure 996
Comparison of Compound and Single-cylinder Engines 997
Two-cylinder and Three-cylinder Engines 997
Steam Consumption of Engines with Superheated Steam 998
Steam Consumption of Different Types of Engine 999
The Lentz Compound Engine 999
Efficiency of Non-condensing Compound Engines 1000
Economy of Engines under Varying Loads 1000
Effect of Water in Steam on Efficiency 1001
Influence of Vacuum and Superheat on Steam Consumption. . . . 1001
Practical Application of Superheated Steam 1002
Performance of a Quadruple Engine 1003
Influence of the Steam-jacket 1004
Best Economy of the Piston Steam Engine 1005
Highest Economy of Pumping-engines 1006
Sulphur-dioxide Addendum to Steam-engine 1007
Standard Dimensions of Direct-connected Generator Sets 1007
Dimensions of Parts of Large Engines 1007
Large Rolling-mill Engines , 1008
Counterbalancing Engines 1008
Preventing Vibrations of Engines * 1008
Foundations Embedded in Air 1009
Most Economical Point of Cut-off 1009
Type of Engine used when Exhaust-steam is used for Heating. . 1009
Cost of Steam-power 1009
Cost of Coal for Steam-power 1010
Power-plant Economics 1011
Analysis of Operating Costs of Power-plants 1013
Economy of Combination of Gas Engines and Turbines 1014
Storing Steam Heat in Hot Water 1014
Utilizing the Sun's Heat as a Source of Power 1015
Rules for Conducting Steam-engine Tests 1015
Dimensions of Parts of Engines.
Cylinder. 1021
Clearance of Piston 1021
Thickness of Cylinder 1021
Cylinder Heads 1022
Cylinder-head Bolts 1022
The Piston 1023
Piston Packing-rings 1023
Fit of Piston-rod 1024
Diameter of Piston-rods 1024
Piston-rod Guides 1024
The Connecting-rod 1025
Connecting-rod Ends 1026
Tapered Connecting-rods 1026
The Crank-pin 1027
Crosshead-pin or Wrist-pin . 1029
The Crank-arm 1029
The Shaft, Twisting Resistance 1030
* iistance to Bending . . , X032
XXX CONTENTS.
_ PAGE
Equivalent Twisting Moment 1032
Fly-wheel Shafts 1033
Length of Shaft-bearings 1034
Crank-shafts with Center-crank and Double-crank Arms 1036
Crank-shaft with two Cranks Coupled at 90° 1037
Crank-shaft with three Cranks at 120° 1038
Valve-stem or Valve-rod 1038
The Eccentric 1039
The Eccentric-rod 1039
Reversing-gear 1039
Current Practice in Engine Proportions, 1897 1039
Current Practice in Steam-engine Design, 1909 1040
Shafts and Bearings of Engines 1042
Calculating the Dimensions Of Bearings 1042
Engine-frames or Bed-plates 1044
Fly-wheels.
Weight of Fly-wheels 1044
Weight of Fly-wheels for Alternating-current Units 1047
Centrifugal Force in Fly-wheels 1047
Diameters for Various Speeds 1048
Strains in the Runs 1049
Arms of Fly-wheels and Pulleys 1050
Thickness of Rims 1050
A Wooden Rim Fly-wheel 1051
Wire- wound Fly-wheels 1052
The Slide-Valve.
Definitions, Lap, Lead, etc 1052
Sweet's Valve-diagram , 1054
The Zeuner Valve-diagram 1054
Port Opening, Lead, and Inside Lead 1057
Crank Angles for Connecting-rods of Different Lengths 1058
Ratio of Lap and of Port-opening to Valve- travel 1058
Relative Motions of Crosshead and Crank 1060
Periods of Admission or Cut-off for Various Laps and Travels. . 1060
Piston- valves 1061
Setting the Valves of an Engine 1061
To put an Engine on its Center 1061
Link-motion 1062
The Walschaerts Valve-gear 1064
Governors.
Pendulum or Fly-ball Governors 1065
To Change the Speed of an Engine 1066
Fly-wheel or Shaft Governors 1066
The Rites Inertia Governor 1066
Calculation of Springs for Shaft-governors 1066
Condensers, Air-pumps, Circulating-pumps, etc..
The Jet Condenser 1068
Quantity of Cooling Water 1068
Ejector Condensers 1069
The Barometric Condensers 1069
The Surface Condenser 1069
Coefficient of Heat Transference in Condensers
The Power Used for Condensing Apparatus
Vacuum, Inches of Mercury and Absolute Pressure
Temperatures, Pressures and Volumes of Saturated Air
Condenser Tubes 1072
Tube-plates 1073
Spacing of Tubes 1073
Air-pump
Area through Valve-seats 1°73
CONTENTS.
PAGE
Work done by an Air-pump 1074
Most Economical Vacuum for Turbines 1075
Circulating-pump 1075
The Leblanc Condenser 1076
Feed-pumps for Marine Engines 1076
An Evaporative Surface Condenser 1076
Continuous Use of Condensing Water 1076
Increase of Power by Condensers 1077
Advantage of High Vacuum in Reciprocating Engines 1078
The Choice of a Condenser 1078
Cooling Towers 1079
Calculation of Air Supply for Cooling Towers 1080
Tests of a Cooling Tower and Condenser 1080
Water Evaporated in a Cooling Tower 1080
Weight of Water Vapor mixed with One Pound of Air -. . . . 1081
Evaporators and Distillers 1082
Rotary Steam Engines — Steam Turbines.
Rotary Steam Engines 1082
Impulse and Reaction Turbines 1082
The DeLaval Turbine 1082
The Zolley or Rateau Turbine 1083
The Parsons Turbine 1083
The Westinghouse Double-flow Turbine 1083
Mechanical Theory of the Steam Turbine 1084
Heat Theory of the Steam Turbine 1084
Velocity of Steam in Nozzles 1085
Speed of the Blades 1086
Comparison of Impulse and Reaction Turbines 1087
Loss due to Windage 1087
Efficiency of the Machine 1087
Steam Consumption of Turbines 1088
Effect of Vacuum on Steam Turbines 1088
Tests of Turbines 1088
Efficiency of the Rankine Cycle 1089
Factors for Reduction to Equivalent Efficiency 1090
Effect of Pressure, Vacuum and Superheat 1090
Steam and Heat Consumption of the Ideal Engine 1091
Westinghouse Turbines at 74th St. Station, New York 1092
A Steam Turbine Guarantee 1092
Efficiency of a 5000-K. W. Steam Turbine Generator 1092
Comparison of Large Turbines and Reciprocating Engines ..... 1092
Steam Consumption of Small Steam Turbines 1093
Low-pressure Steam Turbines 1093
Tests of a 15,000-K.W. Steam-engine Turbine Unit 1095
Reduction Gear for Steam Turbines 1095
Hot-air Engines.
Hot-air or Caloric Engines * 1095
Test of a Hot-air Engine , 1095
INTERNAL, COMBUSTION ENGINES.
Four-cycle and Two-cycle Gas-engines 1096
Temperatures and Pressures Developed 1096
Calculation of the Power of Gas-engines 1097
Pressures and Temperatures at End of Compression 1098
Pressures and Temperature at Release 1099
after Combustion 1099
Mean Effective Pressures 1099
Sizes of Large Gas-engines 1100
Engine Constants for Gas-engines 1101
Rated Capacity of Automobile Engines 1101
Estimate of the Horse-power of a Gas-engine 1101
XXX11 CONTENTS.
PAGE
Oil and Gasoline Engines 1101
The Diesel Oil Engine 1102
The De La Vergne Oil Engine 1102
Alcohol Engines 1102
Ignition 1102
Timing 1103
Governing 1103
Gas and Oil Engine Troubles 1103
Conditions of Maximum Efficiency 1103
Heat Losses in the Gas-engine 1104
Economical Performance of Gas-engines 1104
Utilization of Waste Heat from Gas-engines 1105
Rules for Conducting Tests of Gas and Oil Engines 1105
LOCOMOTIVES.
Resistance of Trains 1108
Resistance of Electric Railway Cars and Trains 1110
Efficiency of the Mechanism of a Locomotive 1111
Adhesion 1111
Tractive Force 1111
Size of Locomotive Cylinders 1112
Horse-power of a Locomotive 1113
Size of Locomotive Boilers 1113
Wootten's Locomotive 1114
Grate-surface, Smokestacks, and Exhaust-nozzles 1115
Fire-brick Arches 1115
Economy of High Pressures 1116
Leading American Types 1116
Classification of Locomotives 1116
Steam Distribution for High Speed 1117
Formulae for Curves . 1117
Speed of Railway Trains 1118
Performance of a High-speed Locomotive 1118
Fuel Efficiency of American Locomotives 1119
Locomotive Link-motion 1119
Dimensions of Some American Locomotives 1120
The Mallet Compound Locomotive 1120
Indicated Water Consumption 1122
Indicator Tests of a Locomotive at High-speed 1122
Locomotive Testing Apparatus 1123
Weights and Prices of Locomotives 1124
Waste of Fuel in Locomotives 1 125
Advantages of Compounding 1 125
Depreciation of Locomotives 1125
Average Train Loads 1125
Tractive Force of Locomotives, 1893 and 1905 1125
Superheating in Locomotives 1126
Counterbalancing Locomotives
Narrow-gauge Railways 1127
Petroleum-burning Locomotives
Fireless Locomotives :....-.... 1127
Self-propelled Railway Cars
Compressed-air Locomotives 1128
Air Locomotives with Compound Cylinders 1129
SHAFTING.
Diameters to Resist Torsional Strain 1130
Deflection of Shafting 1131
Horse-power Transmitted by Shafting 1132
Flange Couplings 1133
Effect of Cold Rolling 1133
Hollow Shafts. . 1133
Sizes of Collars for Shafting 1133
Table for Laying Out Shafting , , , , , , U34
*
CONTENTS. XXxiii
^
PULLETS. PAGE
Proportions of Pulleys 1135
Convexity of Pulleys 1136
Cone or Step Pulleys 1 136
Method of Determining Diameter^ of Cone Pulleys 1136
Speeds of Shafts with Cone Pulleys 1137
Speeds in Geometrical Progression , 1138
BELTING.
Theory of Belts and Bands 1138
Centrifugal Tension 1139
Belting Practice, Formulae for Belting 1139
Horse-power of a Belt one inch wide 1140
A. F. Nagle's Formula 1141
Width of Belt for Given Horse-power , . . . 1141
Belt Factors 1 142
Taylor's Rules for Belting 1143
Earth's Studies on Belting 1146
Notes on Belting 1146
Lacing of Belts 1147
Setting a Belt on Quarter-twist 1147
To Find the Length of Belt 1148
To Find the Angle of the Arc of Contact 1148
To Find the Length of Belt when Closely Rolled 1148
To Find the Approximate Weight of Belts 1148
Relations of the Size and Speeds of Driving and Driven Pulleys. 1148
Evils of Tight Belts 1149
Sag of Belts 1149
Arrangement of Belts and Pulleys 1149
Care of Belts 1150
Strength of Belting (. . 1150
Adhesion, Independent of Diameter rv. 1151
Endless Belts 1151
Belt Data 1151
U. S. Navy Specifications for Leather Belting 1151
Belt Dressings 1151
Cement for Cloth or Leather 1152
Rubber Belting 1152
Steel Belts 1152
Chain Drives.
Roller Chain and Sprocket Drives 1153
Belting versus Chain Drives 1155
Data used in Design of Chain Drives 1156
Comparison of Rope and Chain Drives 1157
GEARING.
Pitch, Pitch-circle, etc 3157
Diametral and Circular Pitch 1158
Diameter of Pitch-line of Wheels from 10 to 100 Teeth 1159
Chordal Pitch 1159
Proportions of Teeth 1 159
Gears with Short Teeth 1160
Formulae for Dimensions of Teeth 1160
Width of Teeth 1161
Proportions of Gear-wheels 1161
Rules for Calculating the Speed of Gears and Pulleys 1162
Milling Cutters for Interchangeable Gears 1162
Forms of the Teeth.
The Cycloidal Tooth 1162
The Involute Tooth 1165
XXXiV CONTENTS,
PAGE
Approximation by Circular Arcs -. 1166
Stub Gear Teeth for Automobiles 1167
Stepped Gears 1168
Twisted Teeth 1168
Spiral Gears 1168
Worm Gearing 1168
The Hindley Worm 1169
Teeth of Bevel-wheels 1169
Annular and Differential Gearing 1169
Efficiency of Gearing 1170
Efficiency of Worm Gearing 1171
Efficiency of Automobile Gears 1172
Strength of Gear Teeth.
Various Formulae for Strength 1172
Comparison of Formulae 1 174
Raw-hide Pinions 1177
Maximum Speed of Gearing 1177
A Heavy Machine-cut Spur-gear 1 178
Frictional Gearing 1178
Frictional Grooved Gearing 1178
Power Transmitted by Friction Drives 1178
Friction Clutches 1179
Coil Friction Clutches 1180
HOISTING AND CONVEYING.
Working Strength of Blocks 1181
Chain-blocks 1181
Efficiency of Hoisting Tackle 1182
Proportions of Hooks 1182
Heavy Crane Hooks 1183
Strength of Hooks and Shackles 1184
Power of Hoisting Engines 1184
Effect of Slack Rope on Strain in Hoisting 1186
Limit of Depth for Hoisting 1 186
Large Hoisting Records \ 1186
Safe Loads for Ropes and Chains 1187
Pneumatic Hoisting 1 187
Counterbalancing of Winding-engines 1188
Cranes.
Classification of Cranes 1189
Position of the Inclined Brace in a Jib Crane 1190
Electric Overhead Traveling Cranes 1190
Power Required to Drive Cranes 1191
Dimensions, Loads and Speeds of Electric Cranes 1191
Notable Crane Installations 1192
A 150-ton Pillar Crane 1192
Compressed-air Traveling Cranes 1192
Electric versus Hydraulic Cranes
Power Required for Traveling Cranes and Hoists 1193
Lifting Magnets 1193
Telpherage 1196
' Coal-handling Machinery.
Weight of Overhead Bins 1196
Supply-pipes from Bins 1196
Types of Coal Elevators 1196
Combined Elevators and Conveyors 1197
Coal Conveyors 1 197
Horse-power of Conveyors 1 198
CONTENTS. XXXV
PAGE
Bucket, Screw, and Belt Conveyors 1198
Weight of Chain and of Flights 1199
Capacity of Belt Conveyors 1 199
Belt Conveyor Construction 1200
Horse-power to Drive Belt Conveyors 1200
Relative Wearing Power of Conveyor Belts * 1200
Pneumatic Conveying 1201
Pneumatic Postal Transmission 1201
,
Wire-rope Haulage.
Self-acting Inclined Plane 1202
Simple Engine Plane 1203
Tail-rope System 1203
Endless Rope System 1203
Wire-rope Tramways 1204
Stress in Hoisting-ropes on Inclined Planes 1204
An Aerial Tramway 21 miles long .. . . 1205
Suspension Cableways and Cable Hoists 1205
Tension Required to Prevent Wire Slipping on Drums 1206
Formulae for Deflection of a Wire Cable 1207
Taper Ropes of Uniform Tensile Strength 1208
WIRE-ROPE TRANSMISSION.
Working Tension of Wire Ropes 1208
Sheaves for Wire-rope Transmission 1208
Breaking Strength of Wire Ropes. 1209
Bending Stresses of Wire Ropes 1209
Horse-power Transmitted 1210
Diameters of Minimum Sheaves 1211
Deflection of the Rope 1211
Limits of Span 1212
Long-distance Transmission 1212
Inclined Transmissions 1212
Bending Curvature of Wire Ropes 1213
ROPE-DRIVING.
Formulae for Rope-driving 1214
Horse-power of Transmission at Various Speeds 1215
Sag of the Rope between Pulleys. 1216
Tension on the Slack Part of the Rope 12*16
Miscellaneous Notes on Rope-driving . . , 1217
Data of Manila. Transmission Rope 1218
Cotton Ropes 1218
FRICTION AND LUBRICATION.
Coefficient of Friction 1219
Rolling Friction '. 1219
Friction of Solids < 1219
Friction of Rest , 1219
Laws of Unlubricated Friction 1219
Friction of Tires Sliding on Rails 1219
Coefficient of Rolling Friction 1220
Laws of Fluid Friction .' 1220
Angles of Repose of Building Materials 1220
Coefficient of Friction of Journals 1220
Friction of Motion 1221
Experiments on Friction of a Journal 1221
Coefficients of Friction of Journal with Oil Bath 1221, 1223
Coefficients of Friction of Motion and of Rest 1222
Value of Anti-friction Metals . . 1223
Cast-iron for Bearings 1223
x — ^y CONTENTS.
PAGE
Friction of Metal under Steam-pressure 1223
Morin's Laws of Friction 1223
Laws of Friction of Well-lubricated Journals 1225
Allowable Pressures on Bearing-surfaces 1226
Oil-pressure in a Bearing 1228
Friction of Car-journal Brasses 1228
Experiments on Overheating of Bearings 1228
Moment of Friction and Work of Friction 1229
Tests of Large Shaft Bearings 1230
Clearance between Journal and Bearing 1230
Allowable Pressures on Bearings 1230
Bearing Pressures for Heavy Intermittent Loads 1231
Bearings for Very High Rotative Speed 1231
Bearing Pressures in Shafts of Parsons Turbine 1232
Thrust Bearings in Marine Practice 1232
Bearings for Locomotives 1232
Bearings of Corliss Engines 1232
Temperature of Engine Bearings 1232
Pivot Bearings 1232
The Schiele Curve 1232
Friction of a Flat Pivot-bearing 1233
Mercury-bath Pivot 1233
Ball Bearings, Roller Bearings, etc 1233
Friction Rollers 1233
Conical Roller Thrust Bearings. 1234
The Hyatt Roller Bearing 1235
Notes on Ball Bearings 1235
Saving of Power by Use of Ball Bearings 1237
Knife-edge Bearings 1238
Friction of Steam-engines 1238
Distribution of the Friction of Engines 1238
Friction Brakes and Friction Clutches.
Friction Brakes 1239
Friction Clutches 1239
Magnetic and Electric Brakes 1240
Design of Band Brakes 1240
Friction of Hydaulic Plunger Packing 1241
Lubrication.
Durability of Lubricants 1241
§ualifications of Lubricants 1242
xamination of Oils 1242
Specifications for Petroleum Lubricants 1243
Penna. R. R. Specifications 1244
Grease Lubricants
Testing Oil for Steam Turbines 1244
8uantity of Oil to Run an Engine
ylinder Lubrication 1245
Soda Mixture for Machine Tools
Water as a Lubricant 124
Acheson's Deflocculated Graphite 1246
Solid Lubricants 1246
Graphite, Soapstone, Metaline 1246
THE FOUNDRY.
Cupola Practice 1247
Melting Capacity of Different Cupolas 1248
Charging a Cupola 1248
Improvement of Cupola Practice
Charges in Stove Foundries 1250
Foundry Blower Practice 1250
CONTENTS. XXXV11
PAGE
Results of Increased Driving 1252
Power Required for a Cupola Fan 1253
Utilization of Cupola Gases 1253
Loss of Iron in Melting 1253
Use of Softeners ; . . 1253
Weakness of Large Castings 1253
Shrinkage of Castings 1254
Growth of Cast Iron by Heating 1254
Hard Iron due to Excessive Silicon 1254
Ferro Alloys for Foundry Use 1255
Dangerous Ferro-silicon 1255
Quality of Foundry Coke 1255
Castings made in Permanent Cast-iron Molds 1255
Weight of Castings from Weight of Pattern 1256
Molding Sand 1256
Foundry Ladles 1257
:
THE MACHINE-SHOP.
Speed of Cutting Tools 1258
Table of Cutting Speeds 1258
Spindle Speeds of Lathes 1259
Rule for Gearing Lathes 1259
Change-gears for Lathes 1260
Quick Change Gears 1260
Metric Screw-threads 1261
Cold Chisels 1261
Setting the Taper in a Lathe 1261
Lubricants for Lathe Centers 1261
Taylor's Experiments on Tool Steel 1261
Proper Shape of Lathe Tool 1261
Forging and Grinding Tools 1263
Best Grinding Wheel for Tools 1263 -~-
Chatter « 1264
Use of Water on Tool 1264
Interval between Grindings 1264
Effect of Feed and Depth of Cut on Speed 1264
Best High Speed Tool Steel — Heat Treatment 1265
Table, Cutting Speeds of Taylor- White Tools 1266
Best Method of Treating Tools in Small Shops 1268
Quality of Different Tool Steels 1268
Parting and Thread Tools 1268
Durability of Cutting Tools 1268
Economical Cutting Speeds 1268 -^
New High Speed Steels, 1909 1269
Stellite 1269
Planer Work 1270-1275
Cutting and Return Speeds of Planers 1270
Power Required for Planing 1270
Time Required for Planing 1271
Standard Planer Tools 1271-1275
Milling Machine Practice <, 1275-1284
Forms of Milling Cutters 1275
Number of Teeth in Milling Cutters 1276
Keyways in Milling Cutters 1277
Power Required for Milling 1278
Modern Milling Practice, 1914 1279
Milling wiJi or against the Feed 1280
Lubricant for Milling Cutters •:. . . 1281
Typica
High-s
Jigh-speed Milling 1282
Limiting Factors of Milling Practice 1283
Speeds and Feeds for Gear Cutting 1284
Drills and Drilling 1285-1290
Forms of Drills 1285
Drilling Compounds 1286
XXXV111 CONTENTS.
1>AGE
Twist Drill and Steel Wire Gages ...;>...,.. 1286
Power Required to Drive Drills 1286, 1287
Feeds and Speeds of Drills 1288
Extreme Results with Drills ; 1289
Experiments on Twist Drills 1289
Cutting Speeds for Tapping and Threading 1290
Sawing Metals 1291
Case-hardening, Cementation, Harvey izing 1291
Change of Shape due to Hardening and Tempering 1291
Power Required for Machine Tools.
Resistance Overcome in Cutting Metal :. . 1292
Power Required to Run Lathes 1292-1295
Sizes of Motors for Machine Tools 1294-1298
Horse-power Constants for Cutting Metals 1299
Pulley Diameters for Motors 1300
Geared Connections for Motors, Table 1301
Motor Requirements for Planers 1302
Tests on a Motor-driven Planer 1303
Power Required for Wood-working Machinery 1303
Power Required to Drive Shafting 1305
Power Required to Drive Machines in Groups 1305
Machine Tool Drives, Speeds and Feeds 1307
Geometrical Progression of Speeds and Feeds 1307
Methods of Driving Machine Tools 1307
Abrasive Processes.
The Cold Saw 1309
Reese's Fusing-disk 1309
Cutting Stone with Wire 1309
The Sand-blast 1309
Polishing and Buffing '. 1310
Laps and Lapping 1310
Emery-wheels 131 1-1317
Artificial Abrasives 1313
Mounting Grinding Wheels, Safety Devices 1314
Grinding as a Substitute for Finish Turning 1317
Grindstones 1317
Various Tools and Processes.
Taper Bolts, Pins, Reamers, etc 1318
Morse Tapers 1319
Jarno Taper 1319
Tap Drills 1320
Taper Pins 1321
T-slots, T-bolts and T-nuts 1321
Punches and Dies, Presses, etc 1321
Punch and Die Clearances > . . 1321
Kennedy's Spiral Punch 1322
. Sizes of Blanks Used in the Drawing Press 1322
Pressure Obtained by the Drop Press 1322
Flow of Metals 1323
Fly-wheels for Presses, Punches, Shears, etc. 1323
Forcing, Shrinking, and Running Fits 1324
Pressures for Mounting Wheels and Crank Pins 1324
Fits for Machine Parts 1325
Running Fits 1325
Shop Allowances for Electrical Machinery
Pressure Required for Press Fits
Stresses due to Force and Shrink Fits 1326
Force Required to Start Force and Shrink Fits 1327
Formulae for Flat and Square Keys 1328
CONTENTS. XXXIX
PAGE
Keys of Various Forms 1328-1331
Depth of Key Seats 1329
Gib Keys 1332
Holding Power of Keys and Set Screws 1332
DYNAMOMETERS.
Traction Dynamometers 1333
The Prony Brake 1333
The Alden Dynamometer 1334
Capacity of Friction-brakes 1334
Transmission Dynamometers 1335
ICE MAKING OR REFRIGERATING-MACHINES.
Operations of a Refrigerating-Machine 1336
Pressures, etc., of Available Liquids 1337
Properties of Sulphur Dioxide Gas 1338
Properties of Ammonia 1339, 1340
Solubility of Ammonia 1341
Properties of Saturated Vapors 1341
Heat Generated by Absorption of Ammonia 1341
Cooling Effect, Compressor Volume and Power Required, with
Different Cooling Agents 1341
Ratios of Condenser, Mean Effective, and Vaporizer Pressures . . 1342
Properties of Brine used to absorb Refrigerating Effect 1343
Chloride-of-calcium Solution 1343
Ice-melting Effect 1344
Ether-machines 1344
Air-machines 1344
Carbon Dioxide Machines 1344
Methyl Chloride Machines 1345
Sulphur-dioxide Machines 1345
Machines Using Vapor of Water 1345
Ammonia Compression-machines 1345
Dry, Wet and Flooded Systems 1345
Ammonia Absorption-machines 1346
Relative Performance of Compression and Absorption Machines 1346
Efficiency of a Refrigerating-machine 1347
Diagrams of Ammonia Machine Operation 1348
Cylinder-heating 1349
Volumetric Efficiency 1349
Pounds of Ammonia per Ton of Refrigeration 1350, 1351
Mean Effective Pressure, and Horse-power 1350
The Voorhees Multiple Effect Compressor 1350
Size and Capacities of Ammonia Machines , . . . . 1352
Piston Speeds and Revolutions per Minute 1353
Condensers for Refrigera ting-machines 1353
Cooling Tower Practice in Refrigerating Plants 1354
Test Trials of Refrigerating-machines 1355
Comparison of Actual and Theoretical Capacity 1355
Performance of Ammonia Compression-machines 1 356
Economy of Ammonia Compression-machines 1357
Form of Report of Test 1358
Temperature Range 1359
Metering the Ammonia 1359
Performance of Ice-making Machines 1359
Performance of a 75-ton Refrigerating-machine 1361-1363
Ammonia Compression-machine, Results of Tests '. . 1364
Performance of a Single-acting Ammonia Compressor 1364
Performance of Ammonia Absorption-machine 1364
Means for Applying the Cold 1365
Artificial Ice-manufacture , Ib66
Test of the New York Hygeia Ice-making Plant 1367
An Absorption Evaporator Ice-making System 1367
Ice-making with Exhaust Steam 1367
Xl CONTENTS.
PAGE
Tons of Ice per Ton of Coal 1367
Standard Ice Cans or Molds 1368
Cubic Feet of Insulated Space per Ton Refrigeration 1368
MARINE ENGINEERING.
Rules for Measuring and Obtaining Tonnage of Vessels 1368
The Displacement of a Vessel 1369
Coefficient of Fineness 1369
Coefficient of Water-line 1369
Resistance of Ships 1369
Coefficient of Performance of Vessels 1370
Defects of the Common Formula for Resistance 1370
Rankine's Formula 1370
Empirical Equations for Wetted Surface 1371
E. R. Mumford's Method 1371
Dr. Kirk's Method 1372
To find the I.H.P. from the Wetted Surface. 1372
Relative Horse-power required for Different Speeds of Vessels . . 1373
Resistance per Horse-power for Different Speeds 1373
Estimated Displacement, Horse-power, etc., of S team- vessels. . . 1374
Speed of Boats with Internal Combustion Engines 1374
Data of Ships of Various Types 1376
Relation of Horse-power to Speed 1376
The Screw-propeller.
Pitch and Size of Screw 1377
Propeller Coefficients 1378
Efficiency of the Propeller 1379
Pitch-ratio and Slip for Screws of Standard Form 1379
Table for Calculating Dimensions of Screws 1380
Marine Practice.
Comparison of Marine Engines, 1872, 1881, 1891, 1901 1380
Turbines and Boilers of the " Lusitania" 1381
Performance of the "Lusitania," 1908 1381
Dimensions and Performance of Notable Atlantic Steamers. . . .
Relative Economy of Turbines and Reciprocating Engines 1382
Reciprocating Engines with a Low-pressure Turbine 1383
The Paddle-wheel.
Paddle-wheels with Radial Floats 1383
Feathering Paddle-wheels 1383
Efficiency of Paddle-wheels 1384
Jet Propulsion.
Reaction of a Jet 1384
CONSTRUCTION OF BUILDINGS.
Foundations.
Bearing Power of Soils 1385
Bearing Power of Piles 1386
Safe Strength of Brick Piers 1386
Thickness of Foundation Walls 1386
Masonry.
Allowable Pressures on Masonry 1386
Crushing Strength of Concrete 1386
Reinforced Concrete 1386
CONTENTS. Xll
Beams and Girders. PAGE
Safe Loads on Beams 1387
Safe Loads on Wooden Beams 1387
Maximum Permissible Stresses in Structural Materials 1388
Walls.
Thickness of Walls of Buildings 1388
Walls of Warehouses, Stores, Factories, and Stables 1388
Floors, Columns and Posts.
Strength of Floors, Roofs, and Supports 1389
Columns and Posts 1389
Fireproof Buildings 1389
Iron and Steel Columns 1389
Lintels, Bearings, and Supports 1390
Strains on Girders and Rivets 1390
Maximum Load on Floors 1390
Strength of Floors 1391
Maximum Spans for 1, 2 and 3 inch Plank 1392
Mill C9lumns . , 1393
Safe Distributed Loads on Southern-pine Beams 1393
Approximate Cost of Mill Buildings 1394
ELECTRICAL ENGINEERING.
C. G. S. System of Physical Measurement 1396
Practical Units used in Electrical Calculations 1396
Relations of Various Units 1397
Units of the Magnetic Circuit 1398
Equivalent Electrical and Mechanical Units 1399
Permeability 1400
logics between Flow of Water and Electricity 1400
Electrical Resistance.
Laws of Electrical Resistance 1400
Electrical Conductivity of Different Metals and Alloys 1401
Conductors and Insulators 1402
Resistance Varies with Temperature : 1402
Annealing 1402
Standard of Resistance of Copper Wire 1402
Wire Table, Standard Annealed Copper 1404
Direct Electric Currents.
Ohm's Law 1406
Series and Parallel or Multiple Circuits 1406
Resistance of Conductors in Series and Parallel 1407
Internal Resistance 1408
Power of the Circuit 1408
Electrical, Indicated, and Brake Horse-power 1408
Heat Generated by a Current 1408
Heating of Conductors 1409
Heating of Coils 1409
Fusion of Wires 1409
Allowable Carrying Capacity of Copper Wires : . 1410
Underwriters' Insulation 1410
Electric Transmission, Direct-Currents.
Drop of Voltage in Wires Carrying Allowed Currents 1410
Section of Wire Required for a Given Current 1410
Weight of Copper for a Given Power 1411
Xlii CONTENTS.
PAGE
Short-circuiting 1411
Economy of Electric Transmission 1411
Efficiency of Electric Systems 1412
Wire Table for 110, 220, 500, 1000, and 2000 volt Circuits 1413
Resistances of Pure Aluminum Wire 1414
Electric Railways.
Schedule Speeds, Miles per Hour 1414
Train Resistance 1415
Rates of Acceleration 1415
Safe Maximum Speed on Curves 1416
Electric Resistance of Rails and Bonds 1416
Electric Locomotives 1416
Efficiencies of Distributing Systems 1417
Steam Railroad Electrifications 1418
Electric Welding.
Arc Welding 1419
Data of Electric Welding in Railway Shops 1419
Resistance Welding 1419
Cost of Welding 1420
Electric Heaters.
Elementary Form of Heater 1420
Relative Efficiency of Electric and Steam Heating 1421
Heat Required to Warm and Ventilate a Room 1421
Domestic Heating 1421
Electric Furnaces.
Arc Furnaces and Resistance Furnaces 1422
Uses of Electric Furnaces 1423
Electric Smelting of Pig-iron 1424
Ferro-alloys 1424
Non-ferrous Metals 1424
Electric Batteries.
Primary Batteries 1425
Description of Storage-batteries or Accumulators 1425
Rules for Care of Storage-batteries 1426
Efficiency of a Storage Cell 1427
Uses of Storage-batteries '. 1427
Edison Alkaline Battery 1428
Electrolysis 1428
Electro-chemical Equivalents 1429
The Magnetic Circuit.
Lines and Loops of Force 1430
Values of B and H 1431
Tractive or Lifting Force of a Magnet 1431
Determining the Polarity of Electro-magnets
Determining the Direction of a Current 1432
Dynamo-electric Machines.
Rating of Generators and Motors 1432
Temperature Limitations of Capacity 143£
Methods of Determining Temperatures 143
Temperature Limits of Hottest Spot
Moving Force of a Dynamo-electric Machine 1435
CONTENTS. xliii
PAGE
Torque of an Armature 1435
Torque, Horse-power and Revolutions 1436
Electro-motive Force of the Armature Circuit 1436
Strength of the Magnetic Field 1436
Direct-Current Generators.
Series-, Shunt- and Compound- wound 1437
Commutating Pole Machines 1438
Parallel Operation 1439
Three- Wire System 1439
Alternating Currents.
Maximum, Average and Effective Values 1440
Frequency 1440
Inductance 1440
Capacity 1440
Power Factor 1440
Reactance, Impedance, Admittance 1441
Skin Effect 1442
Ohm's Law Applied to Alternating Current Circuits 1442
Impedance Polygons 1442
Self-inductance of Lines and Circuits 1446
Capacity of Conductors 1446
Single-phase and Polyphase Currents t 1446
Measurement of Power in Polyphase Circuits 1447
Alternating Current Generators.
Synchronous Generators 1448
Rating 1448
Efficiency 1448
Regulation ; 1449
Rating of a Generator Unit 1449
Windings 1449
Voltages 1450
Parallel Operation 1450
Exciters 1450
Transformers.
Primary and Secondary 1451
Voltage Ratio 1451
Rating 1451
Efficiency 1451
Connections 1452
Auto Transformers 1453
Constant-Current Transformers . , 1453
Synchronous Converters.
Description 1453
Effective E.M.F. between Collector Rings 1454
Voltage Regulation 1455
Starting Synchronous Converters 1455
Motor-Generators.
Balancers 1456
Boosters 1456
Dynamotors 1457
Frequency Changers 1457
Mercury Arc Rectifier 1457
xliv CONTENTS.
Alternating'Current Circuits.
PAGfi
Calculation of Alternating Current Circuits 1457
Relative Weight of Copper Required in Different Systems ..... 1459
Rule for Size of Wires for Three-phase Transmission Lines 1459
Notes on High-tension Transmission 1459
Voltages Advisable for Various Line Lengths 1460
Line Spacing 1460
Size of Line Conductors 1460
A 135,000- volt Three-phase Transmission System 1461
Electric Motors.
Classification of Motors 1461
Characteristics of Motors 1461
Series Motor 1461
Speed Control of Motors 1462
Shunt IMotor 1462
Compound Motor 1462
Induction Motor; Squirrel-cage Motor 1463
Multi-speed Induction Motors 1463
Synchronous Motors 1463
Single-phase Series Motor 1464
Repulsion Induction Motor 1464
Reversible Repulsion Motor 1464
Variable-speed Repulsion Motor 1464
Motor Applications.
Pumps 1464
Fans 1465
Air Compressors 1465
Hoists . . 1465
Machine Tools 1466
Motors for Machine Tools 1467
Illumination — Electric and Gas Lighting.
Illumination 1468
Terms, Units, Definitions .... 1468
Relative Color Values of Illuminants 1469
Relation of Illumination to Vision •. . . 1469
Types of Electric Lamps 1470
Street Lighting 1470
Illumination by Arc Lamps at Different Distances 1471
Data of Some Arc Lamps 1471
Relative Efficiency of Illuminants 1472
Characteristics of Tungsten Lamps 1473
Interior Illumination 1473
Quantity of Electricity or Gas Required for Illuminating 1474
Standard Units; Mazda and Welsbach 1475
Cost of Electric Lighting 1475
Recent Street Lighting Installations 1476
Symbols Used in Electric Diagrams 1477
NAMES AND ABBREVIATIONS OF PERIODICALS AND
TEXT -BOOKS FREQUENTLY REFERRED TO IN
THIS WORK.
Am. Mach. American Machinist.
App. Cyl. Mech. Appleton's Cyclopaedia of Mechanics, Vols. I and II.
Bull. I. & S. A. Bulletin of the American Iron and Steel Association.
Burr's Elasticity and Resistance of Materials.
Clark, R. T. D. D. K. Clark's Rules, Tables, and Data for Mechanical
Engineers.
Clark, S. E. D. K. Clark's Treatise on the Steam-Engine.
Col. Coll. Qly. Columbia College Quarterly.
El. Rev. Electrical Review.
El. World. Electrical World and Engineer.
Engg. Engineering (London).
Eng. News. Engineering News.
Eng. Rec. Engineering Record.
Engr. The Engineer (London).
Fairbairn's Useful Information for Engineers.
Flynn's Irrigation Canals and Flow of Water.
Indust. Eng. Industrial Engineering.
Jour. A. C. I. W. Journal of American Charcoal Iron Workers'
Association.
Jour. Ass. Eng. Soc. Journal of the Association of Engineering
Societies.
Jour. F. I. Journal of the Franklin Institute.
Lanza's Applied Mechanics.
Machy. Machinery.
Merriman's Strength of Materials.
Modern Mechanism. Supplementary volume of Appleton's Cyclo-
paedia of Mechanics.
Peabody's Thermodynamics.
Proc. A. S. H. V. E. Proceedings. Am. Soc'y of Heating and Ventilat-
ing Engineers.
Proc. A. S. T. M. Proceedings Amer. Soc'y for Testing Materials.
Proc. Inst. C. E. Proceedings Institution of Civil Engineers (London).
Proc. Inst. M. E. Proceedings Institution of Mechanical Engineers
(London) .
Proceedings Engineers' Club of Philadelphia.
Rankine, S. E. Rankine's The Steam Engine and other Prime Movers.
Rankine's Machinery and Millwork.
Rankine, R. T. D. Rankine's Rules, Tables, and Data.
Reports of U. S. Iron and Steel Test Board.
Reports of U. S. Testing Machine at Watertown, Massachusetts.
Rontgen's Thermodynamics.
Seaton's Manual of Marine Engineering.
Hamilton Smith, Jr.'s Hydraulics.
Stevens Indicator.
Thompson's Dynamo-electric Machinery.
Thurston's Manual of the Steam Engine. «
Thurston's Materials of Engineering.
Trans. A. I. E. E. Transactions American Institute of Electrical
Engineers.
Trans. A. I. M. E. Transactions American Institute of Mining
Engineers.
Trans. A. S. C. E. Transactions American Society of Civil Engineers.
Trans. A. S. M. E. Transactions American Society of Mechanical
Engineers.
Trautwine's Civil Engineer's Pocket Book.
The Locomotive (Hartford, Connecticut).
Unwin's Elements of Machine Design.
Weisbach's Mechanics of Engineering,
Wood's Resistance of Materials.
Wood's Thermodynamics, _,
MATHEMATICS.
Greek Letter.
a Alpha
j8 Beta
y Gamma
8 Delta
e Epsilon
C Zeta
Eta
N v
Nu
T
T Tan
9 Theta
H £
Xi
Y
v Upsilon
Iota
0 o
Omicron
$
<t> Phi
Kappa
Lambda
II 7T
P P
Pi
Kho
X
Y Chi
$ Psi
Mu
2 as
Sigma
O
w Omega
Arithmetical and Algebraical Signs and Abbreviations*
+ plus (addition).
+ positive.
— minus (subtraction).
- negative.
± plus or minus.
T minus or plus.
= equals.
X multiplied by.
ab or a.b = a X b.
-5- divided by.
/ divided by.
2 _«/6 _««.». 15-16 = if -
0.2 -£; 0.002 -jJL.
V square root.
^ cube root.
M 4th root.
: is to, :: so is, : to (proportion).
2 : 4 :: 3 : 6, 2 is to 4 as 3 is to 6.
: ratio; divided by.
2 : 4, ratio of 2 to 4 = 2/4.
.*. therefore.
> greater than.
< less than.
D square.
O round.
0 degrees, arc or thermometer.
' minutes or feet.
" seconds or inches.
"' accents to distinguish letters,
as a', a", a'".
<*!• «2, 03, ab, etc, read a sub 1, a sub
ft, etc.
on)
- parenthesis, braclr^ts,
braces, vinculum ; denoting
that the numbers enclosed are
to be taken together; as,
(a + b)c = 4 + 3 X 5 = 35,
a2, a3, a squared, a cubed.
an, a raised to the nth power.
109 = 10 to the 9th power =
1,000,000,000.
sin a = the sine of a.
sin"1 a = the arc whose sine is a.
sin a-» = — ^ —
sin a
log = logarithm.
loge or hyp log = hyperbolic loga-
rithm.
% per cent.
A angle.
,L right angle.
JL perpendicular to.
sin, sine.
cos, cosine.
tan, tangent.
sec, secant.
versin, versed sine.
cot, cotangent.
cosec, cosecant.
covers, co-versed sine.
In Algebra, the first letters of
the alphabet, a, b, c, d, etc., are
generally used to denote known
quantities, and the last letters,
w, x, y, z, etc., unknown quantities.
Abbreviations and Symbols com-
monly used,
d, differential (in calculus).
, integral (in calculus).
, integral between limits a and b.
A, delta, difference.
2, sigma, sign of summation.
n, pi, ratio of circumference of
circle to diameter = 3.14159.
g, acceleration due to gravity =
32.16 ft. per second per second.
Abbreviations frequently used in
this Book.
L., 1., length in feet and inches.
B., b., breadth in feet and inches.
D., d., depth or diameter.
H., h., height, feet and inches.
T., t., thickness or temperature.
V., v., velocity.
F., force, or factor of safety,
f., coefficient of fricti9n.
E., coefficient of elasticity.
11., r., radius.
W., w., weight.
P., p., pressure or load.
H.P., horse-power.
I.H.P., indicated horse-power.
B.H.P., brake horse-power,
h. p., high pressure,
i. p., intermediate pressure.
I. p., low pressure.
A.W.G., American Wire Gauge
(Brown & Sharpe).
B.W.G., Birmingham Wire Gauge.
r. p. m., or revs, per min.. revolu-
tions per minute.
Q. =* quantity, or volume.
ARITHMETIC.
. ARITHMETIC.
The user of this book is supposed to have had a training in arithmetic as
well as in elementary algebra. Only those rules are given here which are
apt to be easily forgotten.
GREATEST COMMON MEASURE, OR GREATEST
COMMON DIVISOR OF TWO NUMBERS.
Rule. — Divide the greater number by the less; then divide the divisor
by the remainder, and so on, dividing always the last divisor by the last
remainder, until there is no remainder, and the last divisor is the greatest
common measure required.
LEAST COMMON MULTIPLE OF TWO OR MORE
NUMBERS.
Rule. — Divide the given numbers by any number that will divide the
greatest number of them without a remainder, and set the quotients with
the undivided numbers in a line beneath.
Divide the second line as before, and so on, until there are no two num-
bers that can be divided; then the continued product of the divisors, last
quotients, and undivided numbers will give the multiple required.
FRACTIONS.
To reduce a common fraction to its lowest terms. — Divide both
terms by their greatest common divisor: 39/52 = 3/4.
To change an improper fraction to a mixed number. — Divide the
numerator by the denominator; the quotient is the whole number, and
the remainder placed over the denominator is the fraction: 39/4 = 93/4.
To change a mixed number to an improper fraction. — Multiply
the whole number by the denominator of the fraction; to the product add
the numerator; place the sum over the denominator: 17/g = i5/8.
To express a whole number in the form of a fraction with a given
denominator. — Multiply the whole number by the given denominator,
and place the product over that denominator: 13 = 39/3.
To reduce a compound to a simple fraction, also to multiply
fractions. — Multiply the numerators together for a new numerator and
the denominators together for a new denominator:
2.4 8 . 2^4 8
3°f 3 = 9' alS° 3X3 = 9'
To reduce a complex to a simple fraction. — The numerator and
denominator must each first be given the form of a simple fraction; then
multiply the numerator of the upper fraction by the denominator of the
lower for the new numerator, and the denominator of the upper by the
numerator of the lower for the new denominator:
7/8 = 7/8 = 28 = 1
l3/4 7/4 56 2*
To divide fractions. — Reduce both to the form of simple fractions,
Invert the divisor, and proceed as in multiplication:
3 35 34 12 3
4 +1V4 -5 + 4~ 4X5~20- 5'
Cancellation of fractions. — In compound or multiplied fractions,
divide any numerator and any denominator by any number which will
divide them both without remainder, striking out the numbers thus
divided and setting down the quotients in their stead.
To reduce fractions to a common denominator. — Reduce each
fraction to the form of a simple fraction; then multiply each numerator
DECIMALS.
fcy all the denominators except its own for the new numerator, and all
the denominators together for the common denominator:
— ,
42*
14 f
42*
IS
42*
To add fractions. — Reduce them to a common denominator, then
add the numerators and place their sum over the common denominator:
21 + 14 4- 18
42
53
43
To subtract fractions. — Reduce them to a common denominator,
subtract the numerators and place the difference over the common denom-
inator:
1 _ 3 7-6 J_
2 7 ~ 14 " 14
DECIMALS.
To add decimals. — Set down the figures so that the decimal points
are one above the other, then proceed as in simple addition: 18.75' 4- 0.012
= 18.762.
To subtract decimals. — Set down the figures so that the decimal
points are one above the other, then proceed as in simple subtraction:
18.75 - 0.012 = 18.738.
To multiply decimals. — Multiply as in multiplication of whole num-
bers, then point off as many decimal places as there are in multiplier and
multiplicand taken together: 1.5 X 0.02 = .030 = 0.03.
To divide decimals. — Divide as in whole numbers, and point off in
the quotient as many decimal places as those in the dividend exceed those
in the divisor. Ciphers must be added to the dividend to make its decimal
places at least equal those in the divisor, and as many more as it is desired
to have in the quotient: 1.5 -J- 0.25 = 6. 0.1 -i- 0.3 = 0.10000 -i- 0.3
= 0.3333 +.
Decimal Equivalents of Fractions of One Inch.
1-64
.015625
17-64
.265625
33-64
.515625
49-64
.765625
1-32
.03125
9-32
.28125
17-32
.53125
25-32
.78125
3-64
.046875
19-64
.296875
35-64
.546875
51-64
.796875
1-16
.0625
5-16
.3125
9-16
.5625
13-16
.8125
5-64
.078125
21-64
.328125
37-64
.578125
53-64
.828125
3-32
.09375
11-32
.34375
19-32
.59375
27-32
.84375
7-64
.109375
23-64
.359375
39-64
.609375
55-64
.859375
1-8
.125
3-8
.375
5-8
.625
7-8
.875
9-64
.140625
25-64
.390625
41-64
.640625
57-64
.890625
5-32
.15625
13-32
.40625
21-32
.65625
29-32
.90625
11-64
.171875
27-64
.421875
43-64
.671875
59-64
.921875
3-16
.1875
7-16
.4375
11-16
.6875
15-16
.9375
13-64
.203125
29-64
.453125
45-64
.703125
61-64
.953123
7-32
.21875
15-32
.46875
23-32
,71875
31-32
.96875
15-64
.234375
31-64
.484375
47-64
.734375
63-64
.984375
1-4
.25
1-3
.50
3-4
.75
1
1.
To convert a common fraction into a decimal. — Divide the nume-
rator by the denominator, adding to the numerator as many ciphers
prefixed by a decimal point as are necessary to give the number of decimal
places desired in the result: 1/3 = 1.0000 •*• 3 = 0.3333 +.
To convert a decimal into a common fraction. — Set down the
decimal as a numerator, and place as the denominator 1 with as many
ciphers annexed as there are decimal places in the numerator; erase the
ARITHMETIC.
S3. $
$ 2 8
NO <s rx
t> 00 CO
i § 5 3
>q t>* r>» cq
in T en — Q
eM ON NO en O
\O o in o m
m NO \o !>• t>
t>» \o \o NO m m
rq m oo — T i>»
t>» «— m o -<r GO
•«r »n in \o NO vo
O ON oo fN >o «n in
en 5r ^T S in S 2
^ ^o t>i o* o R SS iS
vo*— \O'— rNtsr-NC^
— moofS>nON<SNO
c<^ en en "^ ^t ^. "^ *f\
O en ir\ 06 O en iin oo O
o — fScn«nspr>.GOO
moo. — •^•t>«OenvOO
^ oo — ^- 06 '— >n GO <s »n
— oovOcnoooineNOrs
ON — •^•rNOCNimcO'— en
"1 ; ts c^i CM en en en en ^ ^
O — «n O^ ^ 00 en t>, — \O O
O'^-t>.O^r>'-^cO — in
•^•NOoo — enmooor4inr>.
~~. ^~. ". ^ N. ^ °i ^ **! ^ "i
t>» <N t^ (S 00 en OO ^ O^ TO «n
fNrNNOvOininT-tenenenfN
§ -. -. -. -. 2 jq cs CM cs ^ Jn
u^ — F> <n o v5 Fi ON in ^ F> ^ O
eNQOenONinONO — rxenoo^O
«Ot>«ONO(M'^-inrNOOO'— enm
o O o — — — — 4 — — cs cs cs CM
c\i ^ \o en o oo in <s ON so en *— oo «n
inOoOO«Senint>,oooeN'<r«r>tN,
enTmt>»ooONO^~eN'^'inNOt>»oo
OOOOOO — — — — •~^1™^^^
sO^en — ONi>»tnen'— ONCOO^TP^O
inen^— O^NO^<SOoomen^- ONt>«»n
^-fNenen-*inNOt>»r>.ooONOO — c^
o o o o o o o o o o o '-;«-;'-; *~.
ONOot^^om^fenmvN — oONcor%>ovn
c^J5;^.iXOvcnr>.'-inoNenvOo^oocN
OO — •— •— (SeNenenrn^^mininN£
OOOOOOOOOOOOOOOC3
fMoom — r>enNN'-
;j ~^ «sj en en "t «r> in o. <q r>. cq cq O;
COMPOUND NUMBERS.
decimal point In the numerator, and reduce the fraction thus formed to Its
lowest terms:
To reduce a recurring decimal to a common fraction. — Subtract
the decimal figures that do not recur from the whole decimal including
one set of recurring figures; set down the remainder as the numerator of
the fraction, and as many nines as there are recurring figures, followed by
as many ciphers as there are non-recurring figures, in the denominator.
Thus:
0.79054054, the recurring figures being 054.
Subtract __ 79
7807 'i 117
99900 "* (redllced to its l°west terms) — *
.COMPOUND OR DENOMINATE NUMBERS.
Reduction descending. — To reduce a compound number to a lower
denomination. Multiply the number by as many units of the lower
denomination as makes one of the higher.
,
fr
ae
3 yards to inches: 3 X 36 = 108 inches.
0.04 square feet to square inches: .04 X 144
• 5.76 sq. in.
_ the given number is in more than one denomination proceed in steps
from the highest denomination to the next lower, and so on to the lowest,
adding in the units of each denomination as the operation proceeds.
3 yds. 1 ft. 7 in. to inches: 3X3 = 9,4-1=10, 10 X 12 = 120, +7 = 127 in.
Reduction ascending. — To express a number of a lower denomina-
tion in terras of a higher, divide the number by the number of units of
the lower denomination contained in one of the next higher; the quotient
is in the higher denomination, and the remainder, if any, in the lower.
127 inches to higher denomination.
127 -^ 12 = 10 feet + 7 inches; 10 feet •*- 3 = 3 yards 4- 1 foot.
Ans. 3 yds. 1 ft. 7 in.
To express the result in decimals of the higher denomination, divide the
given number by the number of units of the given denomination contained
in one of the required denomination, carrying the result to as many places
of decimals as may be desired.
127 inches to yards: 127 -^ 36 •= 319/ae = 3.5277 4- yards.
Decimals of a Foot Equivalent to Inches and Fractions
of an Inch.
Inches
0
H
X
H
H
ft
X
%
0
0
.01042
.02083
.03125
.04167
.05208
.06250
.07292
1
.0833
.0938
.1042
.1146
.1250
.1354
.1458
.1563
2
.1667
.1771
.1875
.1979
.2083
.2188
.2292
.2396
3
.2500
.2604
.2708
.2813
.2917
.3021
.3125
.3229
4
.3333
.3438
.3542
.3646
.3750
.3854
.3958
.4063
5
.4167
.4271
.4375
.4479
.4583
.4688
.4792
.4896
. 6
.5000
.5104
.5208
.5313
.5417
.5521
.5625
.5729
7
.5833
.5938
.6042
.6146
.6250
.6354
.6458
.6563
8
.6667
.6771
.6875
.6979
.7083
.7188
.7292
.7396
9
.7500
.7604
.7708
.7813
.7917
.8021
.8125
.8229
10
.8333
.8438
.8542
.8646
.8750
.8854
.8958
.9063
11
.9167
.9271
.9375
.9479
.9583
.9688
.9792
.9896
ARITHMETIC.
RATIO AND PROPORTION.
Ratio Is the relation of one number to another, as obtained by dividing
the first number by the second. Synonymous with quotient.
Ratio of 2 to 4, or 2 : 4 = 2/4= l/2.
Ratio of 4 to 2, or 4 : 2 = 2.
Proportion is the equality of two ratios. Ratio of 2 to 4 equals ratio
of 3 to 6, 2/4=3/6; expressed thus, 2 : 4 :: 3 : 6; read, 2 is to 4 as 3 is to 6.
The first and fourth terms are called the extremes or outer terms, the
second and third the means or inner terms.
The product of the means equals the product of the extremes:
2 : 4 : : 3 : 6; 2 X 6 = 12; 3 X 4 = 12.
Hence, given the first three terms to find the fourth, multiply the
second and third terms together and divide by the first.
2 : 4 : : 3 : what number? Ans. ~-^ = 6.
Algebraic expression of proportion. — a : b : : c : d; r = -; ad *»5c;
be be , ad, ad
from which a = -r ; d= — ; 6= — ; c = -7- •
a a c o
From the above equations may also be derived the following:
6 : a::d : c a + b : a : :c + d : c' a + b : a — b : : c + d ; c — d
a : c : : b : d a + b : b : : c + d : d an : b™ : _: cn : dn
a-.b^cid a -b:b::c - d:d ^ : ty : : ^/c ^
a — b : a: :c — d : c
Mean proportional between two given numbers, 1st and 2d, is such
a number that the ratio which the first bears to it equals the ratio which it
bears to the second. Thus, 2:4::4:8;4isa mean proportional between
2 and 8. To find the mean proportional between two numbers, extract
the square root of their product.
Mean proportional of 2 and 8 = V2 X 8 = 4.
Single Rule of Three; or, finding the fourth term of a proportion
when three terms are given. — Rule, as above, when the terms are stated
in their proper order, multiply the second by the third and divide by the
first. The difficulty is to state the terms in their proper order. The
term which is of the same kind as the required or fourth term is made the
third; the first and second must be like each other in kind and denomina-
tion. To determine which is to be made second and which first requires
a little reasoning. If an inspection of the problem shows that the answer
should be greater than the third term, then the greater of the other two
given terms should be made the second term — otherwise the first. Thus,
3 men remove 54 cubic feet of rock in a day; how many men will remove
in the same time 10 cubic yards? The answer is to be men — make men
third term; the answer is to be more than three men, therefore make the
greater quantity, 10 cubic yards, the second term; but as it is not the same
denomination as the other term it must be reduced, = 270 cubic feet.
The proportion is then stated:
3 X 270
54 : 270 : : 3 : x (the required number); x = — ^ir~ = 15 men.
O'x
The problem is more complicated if we increase the number of given
terms. Thus, in the above question, substitute for the words "in the
same time" the words '* in 3 days." First solve it as above, as if the work
were to be done in the same time; then make another proportion, stating
it thus: If 15 men do it in the same time, it will take fewer men to do it in
3 days; make 1 day the second terra and 3 days the first term, 3:1::
15 men : 5 men.
POWERS OF NUMBERS.
.
FJ
Compound Proportion, or Double Rule of Three. — By this rule
are solved questions like the one just given, in which two or more statings
are required by the single rule of three. In it, as in the single rule, there
is one third term, which is of the same kind and denomination as the
fourth or required term, but there may be two or more first and second
terms. Set down the third term, take each pair of terms of the same kinc1
separately, and arrange them as first and second by the same reasoning as
is adopted in the single rule of three, making the greater of the pair the
second if this pair considered alone should require the answer to be»greater.
Set down all the first terms one under the other, and likewise all the
second terms. Multiply all the first terms together and all the second
terms together. Multiply the product of all the second terms by the third
term, and divide this product by the product of all the first terms.
Example: If 3 men remove 4 cubic yards in one day, working 12 hours a
day, how many men working 10 hours a day will remove 20 cubic yards
in 3 days?
Yards 4 90
: : 3 men : x men .
Products 120 240 : : 3 : 6 men. Ans.
To abbreviate by cancellation, any one of the first terms may cancel
either the third or any of the second terms; thus, 3 in first cancels 3 in
third, making it 1, 10 cancels into 20 making the latter 2, which into 4
makes it 2, which into 12 makes it 6. and the figures remaining are only
1 : 6 : : 1 : 6.
Yards
Days
Hours
4
3
10
20
1
12
INVOLUTION, OR POWERS OF NUMBERS.
Involution is the continued multiplication of a number by itself a given
number of times. The number is called the root, or first power, and the
products are called powers. The second power is called the square and
the third power the cube. The operation may be indicated without being
performed by writing a small figure called the index or exponent to the
right of and a little above the root; thus, 33 = cube of 3, = 27.
To multiply two or more powers of the same number, add their expo-
nents; thus, 22 X 23 = 25, or 4 X 8 = 32 = 25.
To divide two powers of the same number, subtract their exponents;
thus, 23 -*• 22 = 2l = 2; 22 -s- 24 = 2~2 =.£5
The exponent may
thus be negative. 23 -f- 23 = 2° = 1, whence the zero power of any
number = 1. The first power of a number is the number itself. The
exponent may be fractional, as 2*, 2$, which means that the root is to be
raised to a power whose exponent is the numerator of the fraction, and
the root whose sign is the denominator is to be extracted (see Evolution).
The exponent may be a decimal, as 2°'5, 21'5; read, two to the five-tenths
power, two to the one and five-tenths power. These powers are solved by
means of Logarithms (which see).
First Nine Powers of the First Nine Numbers.
^1
b
o
^
4th
5th
6th
7th
8th
9th
J§
s§
en §
Power.
Power.
Power.
Power.
Power.
Power.
PL.
PH
PH
1
,
1
1
1
1
1
1
1
2
4
8
16
32
64
128
256
512
3
9
27
81
243
729
2187
6561
19683
A
16
64
256
1024
4096
16384
65536
262144
5
25
125
625
3125
15625
78125
390625
1953125
6
36
216
1296
7776
46656
279936
1679616
10077696
7
49
343
2401
16807
1 1 7649
823543
5764801
40353607
8
64
512
4096
32768
262144
2097152
16777216
134217728
9
81
729
6561
59049
531441
4782969
43046721
387420489
ARITHMETIC,
The First Forty Powers of 2.
0
I
o
Q
J3
o
QJ
1
1
J3
i
O
1
£
>
^
PH
*"
ft
>
ft
0
,
9
512
18
262144
27
134217728
36
68719476736
1
2
10
1024
19
524288
28
268435456
37
137438953472
2
4
11
2048
20
1048576
29
536870912
38
274877906944
3
8
12
4096
21
2097152
30
1073741824
39
549755813888
4
16
13
8192
22
4194304
31
2147483648
40
1099511627776
5
32
14
16384
23
8388608
32
4294967296
6
64
15
32768
24
16777216
33
8589934592
7
128
16
65536
25
33554432
34
17179869184
8
256
17
131072
26
67108864
35
34359738368
EVOLUTION.
Evolution is the finding of the root (or extracting the root) of any
number the power of which is given.
The sign V indicates that the square root is to be extracted: ^ <\J <^/
the cube root, 4th root, nth root.
A fractional exponent with 1 for the numerator of the fraction is also
used to indicate that the operation of extracting the root is to be per-
formed; thus, 2*, 2* = <\/2, -\/2.
When the power of a number is indicated, the involution not being per-
formed, the extraction of any root of that power may also be indicated by
dividing the index of the power by the index of the root, indicating the
division by a fraction. Thus, extract the square root of the 6th power
of 2:
*/2« = 2* = 2* = 23 = 8.
The 6th power of 2, as in the table above, is 64: v'ei = 8.
Difficult problems in evolution are performed by logarithms, but the
square root and the cube root may be extracted directly according to the
rules given below. The 4th root is the square root of the square root.
The 6th root is the cube root of the square root, or the square root of the
cube root; the 9th root is the cube root of the cube root; etc.
To Extract the Square Root. — Point off the given number into
periods of two places each, beginning with units. If there are decimals,
point these off likewise, beginning at the decimal point, and supplying
as many ciphers as may be needed. Find the greatest number whose
square is less than the first left-hand period, and place it as the first
figure in the quotient. Subtract its square from the left-hand period,
and to the remainder annex the two figures of the second period for
a dividend. Double the first figure of the quotient for a partial divisor;
find how many times the latter is contained in the dividend exclusive
of the right-hand figure, and set the figure representing that number of
times as the second figure in the quotient, and annex it to the right of
the partial divisor, forming the complete divisor. Multiply this divisor
by the second figure in the quotient and Subtract the product from the
dividend. To the remainder bring down the next period and proceed as
before, in each case doubling the figures in the root already found to obtain
the trial divisor. Should the product of the second figure in the root by
the completed divisor be greater than the dividend, erase the second
figure both from the quotient and from the divisor, and substitute the
next smaller figure, or one small enough to make the product of the second
figure by the divisor less than or equal to the dividend.
6QUA
o i A 1 rcnofl
CUBE ROOT.
SQUARE ROOT.
3.1415926536 U/77245 -f
1
27(214
1189
34712515
(2429
354218692
7084
CUBE ROOT.
35444 160865
1141776
55448511908936
)1772425
300 X I2
30 X 1
1.881.365.963.6251 12345
1
= 300 881
X2 = 60
22= 4
364 728
300X122 =43200
30 X 12 X 3 = 1080
32 = 9
44289
I
300 X 1232 = 4538700
30 X 123 X 4 = 14760
42= 16
4553476
300X12342 =456826800
30X1234X5= 185100
52= 25
457011925
20498963
18213904
2285059625
2285059625
To extract the square root of a fraction, extract the root of a numerator
/4~ 2
and denominator separately, 1/g = ~» or first convert the fraction into
a decimal, *\| = V.4444 4- = 0.6666 -K
To Extract the Cube Root. — Point off the number into periods of 3
figures each, beginning at the right hand, or unit's place. Point off
decimals in periods of 3 figures from the decimal point. Find the greatest
cube that does not exceed the left-hand period; write its root as the first
figure in the required root. Subtract the cube from the left-hand period,
and to the remainder bring down the next period for a dividend.
Square the first figure of the root; multiply by 300, and divide the
product into the dividend for a trial divisor; write the quotient after
the first figure of the root as a trial second figure.
Complete the divisor by adding to 300 times the square of the first
figure, 30 times the product of the first by the second figure, and the
square of the second figure. Multiply this divisor by the second figure;
subtract the product from the remainder. (Should the product be greater
than the remainder, the last figure of the root and the complete divisor
are too large; substitute for the last figure the next smaller number, and
correct the trial divisor accordingly.)
To the remainder bring down the next period, and proceed as before to
find the third figure of the root — that is, square the two figures of the
root already found; multiply by 300 for a trial divisor, etc.
If at any time the trial divisor is greater than the dividend, bring down
another period of 3 figures, and place 0 in the root and proceed.
The cube root of a number will contain as many figures as there are
periods of 3 in the number.
To Extract a Higher Root than the Cube. — The fourth root is the
square root of the square root; the sixth root is the cube root of the square
root or the square root of the cube root. Other roots are most conve-
niently found by the use of logarithms.
ALLIGATION.
shows the value of a mixture of different ingredients when the quantity
and value of each are known.
Let the ingredients be a, b, c, d, etc., and their respective values per
unit w, x, y, z, etc.
10 ARITHMETIC.
A «= the sum of the quantities = a+b+c+dt etc.
P = mean value or price per unit of A.
AP = aw + bx + cy + dz, etc.
P = aw + bx + cy + dz
A
PERMUTATION
shows in how many positions any number of things may be arranged in a
row; thus, the letters a, b, c may be arranged in six positions, viz. abc, acb,
cab, cba, bac, bca.
Rule. — Multiply together all the numbers used in counting the things;
thus, permutations of 1, 2, and 3 = 1X2X3 = 6. In how many
positions can 9 things in a row be placed?
1X2X3X4X5X6X7X8X9 = 362880.
COMBINATION
shows how many arrangements of a few things may be made out of a
greater number. Rule: Set down that figure which indicates the greater
number, and after it a series of figures diminishing by 1, until as many are
set down as the number of the few things to be taken in each combination.
Then beginning under the last one, set down said number of few things;
then going backward set down a series diminishing by 1 until arriving
under the first of the upper numbers. Multiply together all the upper
numbers to form one product, and all the lower numbers to form another;
divide the upper product by the lower one.
How many combinations of 9 things can be made, taking 3 in each com-
bination?
9X8X7 _ 504 _
1X2X3" 6
ARITHMETICAL PROGRESSION,
in a series of numbers, is a progressive increase or decrease in each succes-
sive number by the addition or subtraction of the same amount at each
step, as 1, 2, 3, 4, 5, etc., or 15, 12, 9, 6, etc. The numbers are called terms,
and the equal increase or decrease the difference. Examples in arithmeti-
cal progression may be solved by the following formulae:
Let a = first term, I = last term, d = common difference, n = number
of terms, s = sum of the terms;
1 / / 1 \2
I = a + (n — l)d, = — - d ± y 2ds -f I a — - d\ 9
2s s , (n — I)d
~ ~n ~~ a> = ri — 2 —
X"*J* 2 2d
2 2
==id± Id 4-ldV--
l-a
d-^-l*
P - a
' 2s - I — a
I - a ,
~T~ *" *•
2s
! I + a ' 2d
2(s - an)
n(n - 1) '
2(nl - s)
n(n - 1)
d — 2a ± V(2a - <
*)2 + 8ds
2d
21 + d ± ^(21 -f d)!
* - Sds
GEOMETRICAL PROGRESSION.
GEOMETRICAL PROGRESSION.
11
»ix ci series of numbers, is a progressive increase or decrease in each suc-
cessive number by the same multiplier or divisor at each step, as 1, 2, 4, 8,
16, etc., or 243, 81, 27, 9, etc. The common multiplier is called the ratio.
Let a = first term, I = last term, r = ratio or constant multiplier, n =
number of terms, m = any term, as 1st, 2d, etc., s = sum of the terms:
log I = log a + (n - 1) logr, l(s — J)71""1 - a(s - a)n~l = 0,
m = arm—1 log m = log a + (m — 1) log r.
n~^-n^/a^ _ lrn_l
rl-a
log? - log a
logr h1'
log I — log a
~~ log (s — a) — log (s - I)
log [a + (r - l)s] - log a (
logr
log? — log [Ir — (r — l)s]
logr
Population of the United States.
(A problem in geometrical progression.)
Year.
1860
1870
1880
1890
1900
1910
1920
Population.
31,443,321
39,818,449*
50,155,783
62,622,250
76,295,220
91,972,267
Est. 110,367,000
Increase in 10 Annual Increase,
Years, per cent. per cent.
26.63
25.96
24.86
21.834
20.53
Est. 20.0
2.39
2.33
2.25
1.994
1.886
Est. 1.840
Estimated Population in Each Year from 1880 to 1919.
(Based on the above rates of increase, in even thousands.)
I860.
50,156
1890.
62.622
1900.
76.295
1910..
91.972
1881.
51,281
1891.
63.871
1901 .
77.734
1911 ..
93.665
1882.
52.433
1892.
65.145
1902.
79.201
1912..
95.388
1883.
53.610
1893.
66444
1903.
80.695
1913..
97,143
1884.
54.813
1894.
67.770
1904.
82.217
1914..
98.930
1885.
56,043
1895.
69,122
1905.
83.768
1915..
100.750
1886.
57.301
1896.
70.500
1906.
85.348
1916..
102.604
1887.
58,588
1897.
71.906
1907.
86.958
1917..
104.492
1888.
59.903
1898.
73.341
1908.
88.598
1918..
106.414
1889.
61,247
1899.
74.803
1909.
90.269
1919..
108.373
* Corrected by addition of 1,260,078, estimated error of the census of
1870, Census Bulletin No. 16, Dec, 13, 1890.
12 ARITHMETIC.
The preceding table has been calculated by logarithms as follows:
log r = log I — log a -5- (n — 1), log m = log a + (m - 1) log f
Pop. 1900. . .76,295,220 log = 7.8824988 = log I
1890. . .62,622,250 log = 7.7967285 = log a
diff. = .0857703
n «= 11, n - 1 = 10; diff. -J- 10 = .00857703 = log r,
add log for 1890 7.7967285 •= log a
log for 1891 = 7.80530553 No. = 63,871 . .
add again .00857703
log for 1892 7.81388256 No. = 65,145 . . .
Compound interest is a form of geometrical progression; the ratio
being 1 plus the percentage.
PERCENTAGE: PROFIT AND LOSS: PER CENT
OF EFFICIENCY.
Per cent means "by the hundred." A profit of 10 per cent means a
gain of $10 on every $100 expended. If a thing is bought for $1 and sold
for $2 the profit is 100 per cent; but if it is bought for $2 and sold for $1
the loss is not 100 per cent, but only 50 per cent.
Rule for percentage: Per cent gain or loss is the gain or loss divided by
the original cost, and the quotient multiplied by 100.
Efficiency is defined in engineering as the quotient "output divided by
input," that is, the energy utilized divided by the energy expended. The
difference between the input and the output is the loss or waste of energy.
Expressed as a fraction, efficiency is nearly always less than unity. Ex-
pressed as a per cent, it is this fraction multiplied by 100. Thus we may
say that a motor has an efficiency of 0.9 or of 90 per cent.
The efficiency of a boiler is the ratio of the heat units absorbed by the
boiler in heating water and making steam to the heating value of the coal
burned. The saving in fuel due to increasing the efficiency of a boiler
from 60 to 75% is not 25%, but only 20%. The rule is: Divide the gain
in efficiency (15) by the greater figure (75). The amount of fuel used is
inversely proportional to the efficiency; that is, 60 Ibs. of fuel with 75%
efficiency will do as much work as 75 Ibs. with 60% efficiency. The
saving of fuel is 15 lb*. which is 20% of 75 Ibs.
INTEREST AND DISCOUNT.
Interest is money paid for the use of money for a given time; tho
factors are:
p, the sum loaned, or the principal;
t, the time in years;
r, the rate of interest ;
i, the amount of interest for the given rate and time;
a = p + i = the amount of the principal with interest
at the end of the time.
Formulas:
i — interest = principal X time X rate per cent = i = J-QQ I
a — amount = principal + interest = p + ^g •'
lOOi
r -rate-
INTEREST AND DISCOUNT. 33
If the rate is expressed decimally, — thus, 6 per cent = .06, — the
formulse become
Rules for finding Interest. — Multiply the principal by the rate per
annum divided by 100, and by the time in years and fractions of a year.
If the time is given in days, interest = Principal X rate X no. of Jays _
ooo X 100
In banks interest is sometimes calculated on the basis of 360 days to a
year, or 12 months of 30 days each.
Short rules for interest at 6 per cent, when 360 days are taken as 1 year:
Multiply the principal by number of days and divide by 6000.
Multiply the principal by number of months and divide by 200.
The interest of 1 dollar for one month is £ cent.
Interest of 10O Dollars for Different Times and Rates.
Time 3% 3% 4% 5% 6% 8% 10%
lyear $2.00 $3.00 $4.00 $5.00 $6.00 $8.00 $10.00
1 month .16| .25 .33£ .41§ .50 .66| .83$
lday=g|5year.0055i .0083£ .0111$ .0138f .0166§ .0222§ .02775
is year .005479 .008219 .010959 .013699 .016438 .0219178 .0273973
Discount is interest deducted for payment of money before it is due.
True discount is the difference between the amount of a debt payable
at a future date without interest and its present worth. The present
worth is that sum which put at interest at the legal rate will amount to
the debt when it is due.
To find the present worth of an amount due at a future date, divide the
amount by the amount of $1 placed at interest for the given time. The
discount equals the amount minus the present worth.
What discount should be allowed on $103 paid six months before it is
due, interest being 6 per cent per annum?
— ? = $100 present worth, discount = 3.00.
1 +1 X .06 X ^
Bank discount is the amount deducted by a bank as interest on money
loaned on promissory notes. It is interest calculated not on the actual
sum loaned, but on the gross amount of the note, from which the discount
is deducted in advance. It is also calculated on the basis of 360 days
in the year, and for 3 (in some banks 4) days more than the time specified
in the note. These are called days of grace, and the note is not payable
till the last of these days. In some States days of grace have been
abolished.
What discount will be deducted by a bank in discounting a note for $103
payable 6 months hence? Six months = 182 days, add 3 days grace = 185
Compound Interest. — In compound interest the interest is added to
the principal at the end of each year, (or shorter period if agreed upon).
Let p = the principal, r = the rate expressed decimally, n = no. of
years, and a the amount:
o — amount — p(l + r)n; r — rate =» u - - 1.
p — principal =» (l £ .n ; no. of y.ears=- n =
14
ARITHMETIC.
Compound Interest Table.
(Value of one dollar at compound interest, compounded yearly, at
3, 4, 5, and 6 per cent, from 1 to 50 years.)
£
Per cent
t
§
**
Per cent
3
4
5
6
3
4
5
6
i
.03
.04
.05
.06
16
.6047
1 .8730
2.1829
2.5403
2
.0609
.0816
.1025
.1236
17
.6528
1.9479
2.2920
2.6928
3
.0927
.1249
.1576
.1910
18
.7024
2.0258
2.4066
2.8543
4
.1255
.1699
.2155
.2625
19
.7535
2.1068
2.5269
3.0256
5
.1593
.2166
.2763
.3382
20
.8061
2.1911
2.6533
3.2071
6
.1941
.2653
.3401
.4185
21
.8603
2.2787
2.7859
3.3995
7
.2299
.3159
.4071
.5036
22
.9161
2.3699
2.9252
3.6035
8
.2668
.3686
.4774
.5938
23
.9736
2.4647
3.0715
3.8197
9
.3048
.4233
.5513
.6895
24
2.0328
2.5633
3.2251
4.0487
10
.3439
.4802
.6289
.7908
25
2.0937
2.6658
3.3863
4.2919
11
.3842
.5394
.7103
1.8983
30
2.4272
3.2433
4.3219
5.7435
12
.4258
.6010
.7958
2.0122
35
2.8138
3.9460
5.5159
7.6862
13
.4685
.6651
.8856
2.1329
40
3.2620
4.8009
7.0398
10.2858
14
1.5126
.7317
.9799
2.2609
45
3.7815
5.8410
8.9847
13.7648
15
1.5580
.8009
2.0789
2.3965
50
4.3838
7.1064
11.4670
18.4204
At compound interest at 3 per cent money will double itself in 23 1/2 years,
at 4 per cent in 172/3 years, at 5 per cent in 14.2 years, and at 6 per cent io
11. 9 years.
EQUATION OF PAYMENTS.
By equation of payments we find the equivalent or average time in
which one payment should be made to cancel a number of obligations due
at different dates; also the number of days upon which to calculate interest
or discount upon a gross sum which is composed of several smaller sums
payable at different dates.
Rule. — Multiply each item by the time of its maturity in days from a
fixed date, taken as a standard, and divide the sum of the products by
the sum of the items: the result is the average time in days from the stand-
ard date.
A owes B $100 due in 30 days, $200 due in 60 days, and $300 due in 90
days. In how many days may the whole be paid in one sum of $600?
100X30+200X60+300X90 = 42,000; 42,000-^600 = 70 days, ans.
A owes B $100, $200, and $300, which amounts are overdue respectively
30, 60, and 90 days. If he now pays the whole amount, $600, how many
days' interest should he pay on that sum? Ans. 70 days.
PARTIAL, PAYMENTS.
To compute interest on notes and bonds when partial payments have
been made.
United States Rule. — Find the amount of the principal to the time
of the first payment, and, subtracting the payment from it, find the
amount of the remainder as a new principal to the time of the next pay*
meat.
ANNUITIES.
15
If the payment is less than the interest, find the amount of the principal
to the time when the sum of the payments equals or exceeds the interest
due, and subtract the sum of the payments from this amount.
Proceed in this manner till the time of settlement.
Note. — The principles upon which the preceding rule is founded are:
1st. That payments must be applied first to discharge accrued interest,
and then the remainder, if any, toward the discharge of the principal.
2d. That only unpaid principal can draw interest.
Mercantile Method. — When partial payments are made on short
notes or interest accounts, business men commonly employ the following
method:
Find the amount of the whole debt to the time of settlement ; also find
the amount of each payment from the time it was made to the time of
settlement. Subtract the amount of payments from the amount of the
debt: the remainder will be the balance due.
ANNUITIES.
An Annuity is a fixed sum of money paid yearly, or at other equ^l times
agreed upon. The values of annuities are calculated by the principles of
compound interest.
1. Let i denote interest on $ 1 for a year, then at the end of a year trier
amount will be 1 + i. At the end of n years it will be (1 -f i)n.
2. The sum which in n years will amount to 1 is or (1 + i) — nf
or the present value of 1 due in n years.
3. The amount of an annuity of 1 in any number of years n is ' : — — •
4. The present value of an annuity of 1 for any number of years n is
5. The annuity which 1 will purchase for any number of years n la
i
6. The annuity which would amount to 1 in n years is •
(1 + i)n - ,
Amounts, Present Values, etc., at 5% Interest.
(1)
(2)
(3)
(4)
(5)
(6)
Years
CH-t)«
(l-fzTn
(l+i)n_i
1-0+0-"
i
i
I
i
1-0 + 0-n
(1+t-)n_*
1 .
.05
.952381
1.00
.952381
1.05
1.00
2.
.1025
.907029 '
2.05
1.859410
.537805
.487805
3.
.157625
.863838
3.1525
2.723248
.367209
.317209
4.
.215506
.822702
4.310125
3.545951
.282012
.232012
5.
.276282
.783526
5.525631
4.329477
.230975
.180975
6.
.340096
.746215
6.801913
5.075692
.197017
.147018
7.
.407100
.710681
8.142008
5.786373
.172820
.122820
8.
.477455
.676839
9.549109
6.463213
.154722
.104722
9.
.551328
.644609
1 1 .026564
7.107822
. 1 40690
.090690
10.
.628895
.613913
12.577893
7.721735
.129505
.079505
16
ARITHMETIC.
J£ "fr cq IN. en Ov— 'i^iinNO* o^ <N IN.' eN od inrsic^ixad fN od NO "T en
GO — fNixTt- — QGOIN.VO mm T T en tnencNCN— —
tNenOsenoO vONOenrxhs enaOaO(SGO rj-fNinoOm OrxtNenNO
NONOeN— ;— o^ GO GO NO in ONoeNNOin oo^ — NO in cqo^fn'<t;o
NOmoo^in o'eNoot>.Qo" — '•^•O^TO !>.' en — ' od O^* en' O* t>» in ^
SzrJTJ^^" f^ocoi^O NOin-tn-T enenencN— — w
.
o rs GO — O ^ ts [ "f ao
'' ''
o r>. -<
[ "f ao "1
''
tn in-^-i^Tr^ OO-^-oo— c^G
s — tr» — \q >o\ oo ts o^ — m O oq
K-* vOO^'o'in csl ad >O <n •* hs'
-
O* •— NO' m* — fx o^' in T m ix — in o NO"
Tents — ~ — — ^^ «nmT
t^mO
— oo O
T-— oor>»
TencN — — — — ^ "^"^
p i fx — T NO «n T -f csj o f O m r> , NO o^ t>. oq CN m — IN. in — eN
NO m o en vq In -^ -^r f
'' '
) O ^r o in ix NO O^ r> ; oq ?N -T o «n csi r>. oq
' ' ' ''
co ONOm^o txTcntN.o n-ooooom
f»«O in-«t-^-fNiO •«roini>.Nq C^.'O.***"^***
'in •— "m'o^'ooo* •— in'o^^'o vom'ooooo'
om «n — ONOOI>» t> NO m m m T ^ ^r en CN
rn'inoONo' rin-'oao
o<vj^rcMn m — ooooo
•^rm«N — •— •- — —
.
— "»• o in r>. NOt a^ NO r> — r^
'oin— r>.'"r— '•&<*
NOmm T T T en cq
V in — — ' t>C en in — o— tntx — NO'CN co'intNO
OfN^om m*-oONOO txvONOinm T T T "t
>• *^ rsi %o O in o^ o
O' en — — ^t" O NO' en «
rT^cn CSCN — —
IH o
WEIGHTS AND MEASURES. 17
TABLES FOB CALCULATING SINKING-FUNDS AND
PRESENT VALUES.
Engineers and others connected with municipal work and industrial
enterprises often find it necessary to calculate payments to sinking-funds
which will provide a sum of money sufficient to pay off a bond issue or
other debt at the end of a given period, or to determine the present value
of certain annual charges. The accompanying tables were computed by
Mr. John W. Hill, of Cincinnati, Eng'g News, Jan. 25, 1894.
Table I (opposite page) shows the annual sum at various rates of interest
required to net $1000 in from 2 to 50 years, and Table II shows the present
value at various rates of interest of an annual charge of $1000 for from 5
to 50 years, at five-year intervals, and for 100 years.
Table II. — Capitalization of Annuity of $1000 for
from 5 to 10O Years.
1
Rate of IL terest, per cent.
5
10
15
20
25
30
35
40
45
50
100
31/2
3
3V2
4
4V2
5
5V2
6
4,645.88
8,752.17
12,381.41
15,589.215
18,424.67
20,930.59
23,145.31
25,103.53
26,833.15
28,362.48
36,614.21
4.579.60
8,530.13
11,937.80
4,5 1 4. 92
8,316.45
11,517.23
4,451.68
8,110.74
11,118.06
4,389.91
7,912.67
10,739.42
4,329.45
7,721.73
10,379.53
4,268.09
7,537.54
10,037.48
4,212.40
7,360.19
9,712.30
14,877.27
17,413.01
19,600.21
14,212.12
16,481.28
18,391.85
13,590.21
15,621.93
17,291.86
13,007.88
14,828.12
16,288.77
12,462.13
14,093.86
15,372.36
11,950.26
13,413.82
14,533.63
11,469.96
12,783.38
13,764.85
21,487.04
23,114.36
24,518.49
25,729.58
31,598.81
20,000.43
21,354.83
22,495.23
23,455.21
27,655.36
18,664.37
19,792.65
20,719.89
21,482.08
24,504.96
17,460.89
18,401.49
19,156.24
19,761.93
21,949.21
16,374.36
17,159.01
17,773.99
18,255.86
19,847.90
15,390.48
16,044.92
16,547.65
16,931.97
18,095.83
14,488.65
15,046.31
15,455.85
15,761.87
16,612.64
WEIGHTS AND MEASURES.
Long Measure. — Measures of Length.
12 inches = 1 foot.
3 feet = 1 yard.
1760 yards, or 5280 feet = 1 mile.
Additional measures of length in occasional use: 1000 mils = 1 inch;
4 inches = 1 hand; 9 inches = 1 span; 2 1/2 feet = 1 military pace; 2 yards
= 1 fathom; 5 1/2 yards, or 161/2 feet = 1 rod (formerly also called pole or
perch).
Old Land Measure. — 7.92 inches = 1 link; 100 links, or 66 feet, or 4
rods = 1 chain; 10 chains, or 220 yards = 1 furlong; 8 furlongs, or 80
chains = 1 mile; 10 square chains = 1 acre.
Nautical Measure.
6080.26JeeU.or 1.15156 stat- J =1 nautical
3 nautical miles =1 league.
60 nautical miles, or 69.168 ) _
statute miles J -
/nt thp pmiatnr^
lat tne equator).
360 degrees
circumference of the earth at the equator.
* The British Admiralty takes the round figure of 6080 ft. which is the
length of the " measured mile" used in trials of vessels. The value varies
from 6080.26 to 6088.44 ft. according to different measures of the earth's
diameter. There is a difference of opinion among writers as to the use
of the word " knot" to mean length or a distance — some holding that
it should be used only to denote a rate of speed. The length between
knots on the log line is 1/120 of a nautical mile, or 50.7 ft., when a half-
minute glass is used; so that a speed of 10 knots is equal to 10 nautical
miles per hour.
18 ARITHMETIC.
Square Measure. — Measures of Surface.
144 square inches, or 183.35 circular ) _ , f .
inches )or»
9 square feet = 1 square yard.
30V4 square yards, or 2721/4 square feet ••= 1 square rod.
10 sq. chains, or 160 sq. rods, or 4840 sq. ) ,
yards, or 43560 sq. feet
640 acres or 27,878,400 sq. ft. =1 square mile.
An acre equals a square whose side is 208.71 feet.
Circular Inch; Circular Mil. — A circular inch is the area of a circle
1 inch m diameter = 0.7854 square inch.
1 square inch = 1.2732 circular inches.
A circular mil is the area of a circle 1 mil, or 0.001 inch in diameter.
10002 or 1,000,000 circular mils =- 1 circular inch.
1 square inch = 1,273,239 circular mils.
t The mil and circular mil are used in electrical calculations involving
tne diameter and area of wires.
Solid or Cubic Measure. — Measures of Volume.
1728 cubic inches = 1 cubic foot.
27 cubic feet = 1 cubic yard.
1 cord of wood = a pile, 4X4X8 feet = 128 cubic feet.
1 perch of masonry = 161/2 X 11/2 X 1 foot = 243/4 cubic feet.
Liquid Measure.
4 pills = 1 pint.
2 pints = 1 quart.
4 nnart« — i p-niirm J U. S. 231 cubic inches.
- 1 gallon jEng 277.274 cubic inches.
Old Liquid Measures. — 31 1/2 gallons = 1 barrel; 42 gallons = 1 tierce;
2 barrels, or 63 gallons = 1 hogshead; 84 gallons, or 2 tierces = 1 pun-
cheon; 2 hogsheads, or 126 gallons = 1 pipe or butt; 2 pipes, or 3 pun-
cheons = 1 tun.
A gallon of water at 62° F. weighs 8.33531b. (air free, weighed in vacuo).
The U. S. gallon contains 231 cubic inches; 7.4805 gallons = 1 cubic
foot. A cylinder 7 in. diam. and 6 in. high contains 1 gallon, very nearly,
or 230.9 cubic inches. The British Imperial gallon contains 277.274 cubic
inches = 1.20032 U. S. gallon, or 10 ibs. of water at 62° F.
The gallon is a very troublesome unit for engineers. Much labor might
be saved if it were abandoned and the cubic fo9t used instead. The
capacity of a tank or reservoir should.be stated in cubic feet, and the
delivery of a pump in cubic feet per second or in millions of cubic feet in
24 hours. One cubic foot per second = 86,400 cu. ft. in 24 hours. One
million cu. ft. per 24 hours = 11.5741 cu. ft. per sec.
The Miner's Inch. — (Western U. S. for measuring flow of a stream
of water.) An act of the California legislature, May 23, 1901, makes the
standard miner's inch 1.5 cu. ft. per minute, measured through any aper-
ture or orifice.
The term Miner's Inch is more or less indefinite, for the reason that Cali-
fornia water companies do not all use the same head above the centre of
the aperture, and the inch varies from 1.36 to 1.73 cu. ft. per min., but
the most common measurement is through an aperture 2 ins. high and
whatever length is required, and through a plank 11/4 ins. thick. The
lower edge of the aperture should be 2 ins. above the bottom of the meas-
uring-box, and the plank 5 ins. high above the aperture, thus making a 6-in.
head above the centre of the stream. Each square inch of this opening
represents a miner's inch, which is equal to a flow of 1 1/2 cu. ft. per min.
Apothecaries' Fluid Measure.
60 minims = 1 fluid drachm. 8 drachms = 1 fluid ounce.
In the U. S. a fluid ounce is the 128th part of a U. S. gallon, or 1.805
cu. ins. It contains 456.3 grains of water at 39° F. In Great Britain
the fluid ounce is 1.732 cu. ins. and contains 1 ounce avoirdupois, or 437.5
grains of water at 62° F.
WEIGHTS AND MEASURES. 19
Dry Measure, U. S.
2 pints = 1 quart. 8 quarts = 1 peck. 4 pecks = 1 bushel.
The standard U. S. bushel is the Winchester bushel, which is, in
cylinder form, 18 1/2 inches diameter and 8 inches deep, and contains
2150.42 cubic inches.
A struck bushel contains 2150.42 cubic inches = 1.2445 cu. ft.; 1
cubic foot = 0.80356 struck bushel. A heaped bushel is a cylinder 18 1/2
inches diameter and 8 inches deep, with a heaped cone not less than
6 inches high. It is equal to 1 V* struck bushels. (When applied to
apples and pears the bushel should be heaped so as to contain 2737.715
cu. in. = 1.2731 struck bushels. — Decision of U. S. Court of Customs
Appeals, 1912.)
The British Imperial bushel = 8 imperial gallons or 2218.192 cu. in. =
1.2837 cu. ft. The British quarter = 8 imperial bushels.
Capacity of a cylinder in U. S. gallons = square of diameter, in inches
X height in inches X .0034. (Accurate within 1 part in 100,000.)
Capacity of a cylinder in U. S. bushels = square of diameter in inches
X height in inches X 0.0003652.
Shipping Measure.
Register Ton.— For register tonnage or for measurement of the entire
ternal capacity of a vessel:
100 cubic feet = 1 register ton.
This number is arbitrarily assumed to facilitate computation.
Shipping Ton. — For the measurement of cargo:
40 cubic feet = 1 U. S. shipping ton = 32.143 U. S. bushels.
42 cubic feet = 1 .British shipping ton = 32.719 imperial bushels.
Carpenter's Rule. — Weight a vessel will carry = length of keel X
breadth at main beam X depth of hold in feet -h 95 (the cubic feet
allowed for a ton). The result will be the tonnage. For a double-
decker instead of the depth of the hold take half the breadth of the
Measures of Weight.— Avoirdupois or Commercial
Weight.
16 drachms, or 437.5 grains = 1 ounce, oz.
16 ounces, or 7000 grains = 1 pound, Ib.
28 pounds = 1 quarter, qr.
4 quarters = 1 hundredweight, cwt. = 112 Ib.
20 hundredweight = 1 ton of 2240 Ib., gross or long ton.
2000 pounds = 1 net, or short ton.
2204.6 pounds = 1 metric ton.
1 stone = 14 pounds; 1 quintal = 100 pounds.
The drachm, quarter, hundredweight, stone, and quintal are now
seldom used in the United States.
Troy Weight
24 grains = 1 pennyweight, dwt.
20 pennyweights = 1 ounce, oz. = 480 grains.
12 ounces = 1 pound, Ib. = 5760 grains.
Troy weight is used for weighting gold and silver. The grain is the
same in Avoirdupois. Troy, and Apothecaries' weights. A carat, for
weighing diamonds = 3.086 grains = 0.200 gramme. (International
Standard, 1913.)
Apothecaries' Weight.
20 grains = 1 scruple, 3
3 scruples — 1 drachm, 3 - 60 grains.
8 drachms » 1 ounce, 5 — 480 grains.
12 ounces « 1 pound, Ib. « 5760 grains.
20 ARITHMETIC.
To determine whether a balance has unequal arms. — After weigh-
ing an article and obtaining equilibrium, transpose the article and the
weights. If the balance is true, it will remain in equilibrium; if untrue,
the pan suspended from the longer arm will descend.
To weigh correctly on an incorrect balance. — First, by substitu-
tion. Put the article to be weighed in one pan of the balance and counter-
poise it by any convenient heavy articles placed on the other pan.
Remove the article to be weighed and substitute for it standard weights
until equipoise is again established. The amount of these weights is the
weight of the article.
Second, by transposition. Determine the apparent weight of the
article as usual, then its apparent weight after transposing the article and
the weights. If the difference is small, add half the difference to the
smaller of the apparent weights to obtain the true weight. If the differ-
ence is 2 per cent the error of * his method is 1 part in 10,000. For larger
differences, or to obtain a perfectly accurate result, multiply the two
apparent weights together and extract the square root of the product.
Circular Measure.
60 seconds, * = 1 minute, '.
60 minutes, ' = 1 degree, °.
90 degrees = 1 quadrant.
380 = circumference.
Arc of angle of 57.3°, or 360° •*• 6.2832 = 1 radian — the arc whose length
is equal to the radius.
Time.
60 seconds = 1 minute.
60 minutes = 1 hour.
24 hours = 1 day.
7 days = 1 week.
365 days, 5 hours, 48 minutes, 48 seconds «» 1 year.
By the Gregorian Calendar every year whose number is divisible by 4
is a leap year, and contains 366 days, the other years containing 365 days,
except that the centesimal years are leap years only when the number of
the year is divisible by 400.
The comparative values of mean solar and sidereal time are shown by
the following relations according to Bessel:
365.24222 mean solar days = 366.24222 sidereal days, whence
1 mean solar day = 1.00273791 sidereal days;
1 sidereal day = 0.99726957 mean solar day;
24 hours mean solar time = 24* 3 56«.555 sidereal time;
24 hours sidereal time = 23* 56*n 4«.091 mean solar time,
whence 1 mean solar day is 3» 55«.91 longer than a sidereal day, reckoned
in mean solar time.
BOARD AND TIMBER MEASURE.
Board Measure.
In board measure boards are assumed to be one inch in thickness. To
obtain the number of feet board measure (B. M.) of a board or stick of
square timber, multiply together the length in feet, the breadth in feet,
and the thickness in inches.
To compute the measure or surface in square feet. — When all
dimensions are in feet, multiply the length by the breadth, and the prod-
uct will give the surface required.
When either of the dimensions are in inches, multiply as above and
divide the product by 12.
When all dimensions are in inches, multiply as before and divide product
by 144.
Timber Measure.
To compute the volume of round timber. — When all dimensions
are in feet, multiply the length by one quarter of the product of the mean
WEIGHTS AND MEASURES.
21
girth and diameter, and the product will give the measurement in cubic
feet. When length is given in feet, and girth and diameter in inches
divide the product by 144; when all the dimensions are in inches, divide
by 1728.
To compute the volume of square timber. — When all dimensions
are in feet, multiply together the length, breadth, and depth; the product
will be the volume in cubic feet. When one dimension is given in inches,
divide by 12; when two dimensions are in inches, divide by 144: when all
three dimensions are in inches, divide by 1728.
Contents in Feet of Joists, Scantling, and Timber,
Length in Feet.
Size.
12
14
16
18
20
22
24
26
28
30
Feet Board Measure.
2X4
8
9
11
12
13
15
16
17
19
20
2X6
12
14
16
18
20
22
24
26
28
30
2X8
16
19
21
24
27
29
32
35
37
40
2 X 10
20
23
27
30
33
37
40
43
47
50
2 X 12
24
28
32
36
40
44
48
52
56
60
2 X 14
28
33
37
42
47
51
56
61
65
70
3X8
24
28
32
36
40
44
48
52
56
60
3 X 10
30
35
40
45
50
55
60
65
70
75
3 X 12
36
42
48
54
60
66
72
78
84
90
3 X 14
42
49
56
63
70
77
64
91
98
105
4X4
16
19
21
24
27
29
32
35
37
40
4X6
24
28
32
36
40
44
43
52
56
60
4X8
32
37
43
43
53
59
64
69
75
80
4 X 10
40
47
53
60
67
73
80
87
93
100
4 X 12
48
56
64
72
80
83
96
104
112
120
4 X 14
56
65
75
84
93
103
112
121
131
140
6X6
36
42
43
54
60
66
72
78
84
90
6X8
48
56
64
72
80
83
96
104
112
120
6 X 10
60
70
80
90
100
110
120
130
140
150
6 X 12
72
84
96
108
120
132
144
156
168
180
6X 14
84
98
112
126
140
154
168
182
196
210
8X8
64
75
85
96
107
117
128
139
149
160
8 X 10
80
93
107
120
133
147
160
173
187
200
8 X 12
96
112
128
144
160
176
192
208
224
240
8 X 14
112
131
149
168
187
205
224
243
261
280
10 X 10
100
117
133
150
167
183
200
217
233
250
10 X 12
120
140
160
180
200
220
240
260
2ttO
300
10 X 14
140
163
187
210
233
257
280
303
327
350
12 X 12
144
168
192
216
240
264
288
312
336
360
12 X 14
168
196
224
252
280
308
336
364
392
420
14 X 14
196
229
261
294
327
359
392
425
457
490
FRENCH OB METRIC MEASURES.
The metric unit of length is the metre = 39.37 inches.
The metric unit of weight is the gram = 15.432 grains.
1 he following prefixes are used for subdivisions and multiples: Milli =
Viooq, Centi = Vioo, Deci = 1/10, Deca = 10, Hecto = 100, Kilo = 1000.
«i.yna = 10,000.
22 ARITHMETIC.
FRENCH AND BRITISH (AND AMERICAN)
EQUIVALENT MEASURES.
Measures of Length.
FRENCH. BRITISH and U. S.
1 metre = 39.37 inches, or 3.28083 feet, or 1.09361 yards.
0.3048 metre = 1 foot.
1 centimetre = 0.3937 inch.
2.54 centimetres = 1 inch.
1 millimetre = 0.03937 inch, or 1 /25 inch, nearly.
25.4 millimetres = 1 inch.
1 kilometre = 1093. Gl yards, or 0.62137 mile.
Of Surface
FRENCH BRITISH and U. S.
1 omiarp mptrp - j 10.7639 square feet.
~ 1 1.196 square yards.
0.836 square metre = 1 square yard.
0.0929 square metre = 1 square foot.
1 square centimetre = 0. 15500 square inch.
6.452 square centimetres = 1 square inch.
1 square millimetre = 0.00155 sq. in. = 1973.5 circ. mils.
645.2 square millimetres = 1 square inch.
1 centiare = 1 sq. metre = 10.764 square feet.
1 are = 1 sq. decametre = 1076.41
1 hectare = 100 ares = 107641 = 2.4711 acres.
1 sq. kilometre = 0.386109 sq. miles = 247.11
1 sq. myriametre = 38.6109
Of Volume
FRENCH. BRITISH and U. S.
i miVnV rnpfro J 35.314 cubic feet,
1 cubic metre = -j 13QS cubic yards
0.7645 cubic metre = 1 cubic yard.
0.02832 cubic metre = 1 cubic foot.
1 oiibio rlpHmptrP - i 61.0234 cubic inches.
1 0.035314 cubic foot.
28.32 cubic decimetres = 1 cubic foot.
1 cubic centimetre = 0.061 cubic inch.
16.387 cubic centimetres = 1 cubic inch.
1 cubic centimetre = 1 millilitre = 0.061 cubic inch.
1 decilitre =6.102 "
1 litre = 1 cubic decimetre = 61.0234 ' = 1.05671
quarts, U. S.
1 hectolitre or decistere = 3.5314 cubic feet = 2.8375 bu., U. S.
1 stere, kilolitre, or cubic metre = 1.308 cubic yards = 28.37 bu.,
Of Capacity
FRENCH. BRITISH and U. S.
f 6 1.0234 cubic inches.
oiil'gaUoi? (American),
2.202 pounds of water at 62° F.
28.317 litres = 1 cubic foot.
4.543 litres = 1 gallon (British).
3.785 litres = 1 gallon (American).
Of Weight.
FRENCH. BRITISH and U. S.
1 gramme = 15,432 grains.
0.0648 gramme = 1 grain.
1 kilogramme = 2.204622 pounds.
0.4536 kilogramme = 1 pound.
1 tonne or metric ton I = j 0.9842 ton of 2240 pounds.
1000 kilogrammes f = j 22G4. 6 pounds.
1.016 metric tons « 1 ton of 2240 pounds.
WEIGHTS AND MEASURES.
23
Mr. O. H. Titmann, in Bulletin No. 9 of the U. S. Coast and Geodetic
Survey, discusses the work of various authorities who have compared the
yard and the metre, and by referring all the observations to a common
standard has succeeded in reconciling the discrepancies within very
narrow limits. The following are his results for the number of inches in a
metre according to the comparisons of the authorities named: 1817.
Hassler, 39.36994 in. 1818. Kater, 39.36990 in. 1835. Baily, 39.36973
in. 1866. Clarke, 39.36970 in. 1885. Comstock, 39.36984 in. The mean
of these is 39.36982 in.
The value of the metre is now denned in the U. S. laws as 39.37 inches.
French and British Equivalents of Compound Units.
FRENCH. BRITISH.
gramme per square millimetre = 1.422 Ibs. per sq. in.
kilogramme per square ' = 1422.32
centimetre = 14.223 "
.0335 kg. per sq. cm. = 1 atmosphere = 14.7 " " " "
0.070308 kilogramme per square centimetre = 1 Ib. per square inch.
kilogrammetre = 7.2330 foot-pounds.
gramme per litre = 0.062428 Ib. per cu. ft. = 58.349 grains per U. S gal.
of water at 62° F.
1 grain per U. S. gallon=l part in 58,349 = 1.7138 parts per 100,000
— 0.017138 grammes per litre.
METRIC CONVERSION TABLES.
The following tables, with the subjoined memoranda, were published
in 1890 by the United States Coast and Geodetic Survey, office of standard
weights and measures, T. C. Mendenhall, Superintendent.
-
Tables for Converting TJ. S. Weights and Measures —
Customary to Metric.
LINEAR.
Inches to Milli-
metres.
Feet to Metres.
Yards to Metres.
Miles to Kilo-
metres.
2 =
3 =
4 =
5 =
25.4001
50.8001
76.2002
101.6002
127.0003
0.304801
0.609601
0.914402
1.219202
1.524003
0.914402
1 .828804
2.743205
3.657607'
4.572009
1.60935
3.21869
4.82804
6.43739
8.04674
8 =
152.4003
177.8004
203.2004
228.6005
1.828804
2.133604
2.438405
2:743205
5.486411
6.400813
7.315215
8.229616
9.65608
11.26543
12.87478
14.48412
SQUARE.
Square Inches to
Square Centi-
metres.
Square Feet to
Square Deci-
metres.
Square Yards to
Square Metres.
Acres to
Hectares.
K
1 =
6.452
9.290
0.836
04047
2 =
12.903
18.581
1.672
0.8094
3 =
19.355
27.871
2.508
1.2141
A
25.807
37.161
3.344
1.6187
5 =
32.258
46.452
4.181
2.0234
6 =
38.710
55.742
5.017
2.4281
7 =
45.161
65.032
5.853
2.8328
8 =
51.613
74.323
6.689
3.2375
9 =
58.065
83.613
7.525
3.6422
ARITHMETIC.
CUBIC.
Cubic Inches to
Cubic Centi-
metres.
Cubic Feet to
•Cubic Metres.
Cubic Yards to
Cubic Metres.
Bushels to
Hectolitres.
Ui-UUJ Si-
ll II II II 11
16.387
32.774
49.161
65.549
81.936
0.02832
0.05663
0.08495
0.11327
0.14158
0.765
1.529
2.294
3.058
3.823
0.35242
0.70485
1.05727
1 .40969
1.76211
6 =
8 =
98.323
114.710
131.097
147.484
0.16990
0.19822
0.22654
0.25485
4.587
5.352
6.116
6.881
2.11454
2.46696
2.81938
3.17181
CAPACITY.
Fluid Dracnms
to Millilitres or
Cubic Centi-
metres.
Fluid Ounces to
Millilitres .
Quarts to Litres.
Gallons to
Litres.
1 =
2 =
3 =
4 =
5 =
6 =
8 =
9 =
3.70
7.39
11.09
14.79
18.48
22.18
25.88
29.57
33.28
29.57
59.15
88.72
118.30
147.87
177.44
207.02
236.59
266.16
0.94636
1 .89272
2.83908
3.78544
4.73180
5.67816
6.62452
7.57088
8.51724
3.78544
7.57088
11.35632
15.14176
18.92720
22.71264
26.49808
30.28352
34.06896
WEIGHT.
Grains to Milli-
grammes.
Avoirdupois
Ounces to
Grammes.
Avoirdupois
Pounds to Kilo-
grammes.
Troy Ounces to
Grammes.
1 =»
2
4 =
5 =
6 =
8-=
9-
64.7989
129.5978
194.3968
259.1957
323.9946
388.7935
453.5924
518.3914
583.1903
28.3495
56.6991
85.0486
113.3981
141.7476
170.0972
198.4467
226.7962
255.1457
0.45359
0.90719
1 .36078
1.81437
2.26796
2.72156
3.17515
3.62874
4.08233
31.10348
62.20696
93.31044
124.41392
155.51740
186.62089
217.72437
248.82785
279.93133
1 chain = 20.11 69 metres.
1 square mile = 259 hectares.
1 fathom = 1 .829 metres.
1 nautical mile = 1853.27 metres.
1 foot = 0.304801 metre.
1 avoir, pound = 453.5924277 gram.
15432.35639 grains = 1 kilogramme.
METRIC CONVERSION TABLES.
25
Tables for Converting U. S. Weights and Measures —
Metric to Customary.
LINEAR.
Metres to
Inches.
Metres to
Feet.
Metres to
Yards.
Kilometres to
Miles.
1 =
2 =
4 =
5 =
39.3700
78.7400
118.1100
157.4800
196.8500
3.28083
6.56167
9.84250
13.12333
16.40417
1.093611
2.187222
3.280833
4.374444
5.468056
0.62137
1 .24274
1.86411
2.48548
3.10685
1:
236.2200
275.5900
314.9600
354.3300
19.68500
22.96583
26.24667
29.52750
6.561667
7.655278
8.748889
9.842500
3.72822
4.34959
4.97096
5.59233
SQUARE.
Square Centi-
metres to
Square Inches.
Square Metres
to Square Feet.
Square Metres
to Square Yards.
Hectares to
Acres.
1 =
0.1550
10.764
1.196
2.471
2 =
0.3100
21.528
2.392
4.942
3 =
0.4650
32.292
3.588
7.413
4 =
0.6200
43.055
4.784
9.884
5 =
0.7750
53.819
5.980
12.355
6 =
0.9300
64.583
7.176
14826
7 =
1.0850
75.347
8.372
17.297
8 =
1.2400
86.111
9.563
19.768
9 =
1.3950
96.874
10.764
22.239
CUBIC.
Cubic Centi-
metres to Cubic
Inches.
Cubic Deci-
metres to Cubic
Inches.
Cubic Metres to
Cubic Feet.
Cubic Metres to
Cubic Yards.
1 =
0.0610
61.023
35.314
1.308
2 -
0.1220
122.047
70.629
2.616
3 =
0.1831
183.070
105.943
3.924
4 =
0.2441
244.093
141.258
5.232
5 =
0.3051
305.117
176.572
6.540
6 =
0.3661
366.140
211.887
7.848
•j
0.4272
427.163
247.201
9.156
8 =
0.4882
488.187
282.516
10.464
9 =
0.5492
549.210
317.830
11.771
CAPACITY.
Milhlitres or
Cubic Centi-
metres toFluid
Centimetres
to Fluid
Ounces.
Litres to
Quarts.
Dekalitres
to
Gallons.
Hektolitres
to
Bushels.
Drachms.
1 =
0.27
0.338
1.0567
2.6417
2.8375
2 =
0.54
0.676
2.1134
5.2834
5.6750
3 =
0.81
1.014
3.1700
7.9251
8.5125
4 =
1.08
1.352
4.2267
10.5668
11.3500
5 =
1.35
1.691
5.2834
13.2085
14.1875
6 =
1.62
2.029
6.3401
15.8502
17.0250
j
1.89
2.363
7.3968
18.4919
. 19.8625
8 =
2.16
2.706
8.4534
21.1336
22.7000
9 =
2.43
3.043
9.5101
23.7753
25.5375
26
ARITHMETIC.
WEIGHT.
Milligrammes
to Grains.
Kilogrammes
to Grains.
Hectogrammes
( 1 00 grammes)
to Ounces Av.
Kilogrammes
to Pounds
Avoirdupois.
1 =
2 =
3 =
4 =
5 =
0.01543
0.03086
0.04630
0.06173
0.07716
15432.36
30864.71
46297.07
61729.43
77161.78
3.5274
7.0548
10.5822
14.1096
17.6370
2.20462
4.40924
6.61386
8.81849
11.02311
6 =
•j
8 =
9 =
0.09259
0.10803
0.12346
0.13839
92594.14
108026.49
123458.85
138891.21
21.1644
24.6918
28.2192
31.7466
13.22773
15.43235
17.63697
19.84159
Quintals to
Pounds Av.
Milliers or Tonnes to
Pounds Av.
Grammes to Ounces.
Troy.
1 =,
220.46
2204.6
0.03215
2 =
440.92
4409.2
0.06430
3 =
661.38
6613.8
0.09645
4 =
881.84
8818.4
0.12860
5 -
1102.30
11023.0
0.16075
6 =
1322.76
13227.6
0.19290
7 -
1543.22
15432.2
0 22505
8==
1763.68
17636.8
0.25721
9 =
1984.14
19841.4
0.28936
The British Avoirdupois pound was derived from the British standard
Troy pound of 1758 by direct comparison, and it contains 7000 grains Troy.
The grain Troy is therefore the same as the grain Avoirdupois, and the
pound Avoirdupois in use in the United States is equal to the British
pound Avoirdupois.
By the concurrent action of the principal governments of the world an
International Bureau of Weights and Measures has been established near
Paris.
The International Standard Metre is derived from the Metre des
Archives, and its length is defined by the distance between two lines at 0°
Centigrade, on a platinum-iridium bar deposited at the International
Bureau.
The International Standard Kilogramme is a mass of platinum-indium
deposited at the same place, and its weight in vacua is the same as that of
the Kilogramme des Archives.
Copies of these international standard weights and measures are
deposited in the office of the United States Bureau of Standards.
The litre is equal to a cubic decimetre of water, and it is measured by
the quantity of distilled water which, at its maximum density, will
counterpoise the standard kilogramme in a vacuum; the volume of such
a quantity of water being, as nearly as has been ascertained, equal to a
cubic decimetre.
The metric system was legalized in the United States in 1866. Many
attempts were made during the 50 years following to have the U. S.
Congress pass laws to make the metric system the legal standard, but they
have all failed. Similar attempts in Great Britain have also failed. For
arguments for and against the metric system see the report of a committee
of the American Society of Mechanical Engineers, 1903, Vol. 24.
WEIGHTS AND MEASURES. 27
COMPOUND UNITS.
Measures of Pressure and Weight.
One pound force (or pressure) = the force exerted by gravity on 1 Ib.
of matter at a place where the acceleration due to gravity is 32.1740
feet-per-second per second; that is (very nearly) the force of gravity on
1 Ib. of matter at latitude 45° at the sea level.
1 Ib. per square inch
144 Ib. per square foot.
2.0355 in. of mercury at 32° P.
2.0416 " " " "62°F.
2.309 ft. of water at 62° F.
27.71 ins. " " "62° F.
j 0.1276 in. of mercury at 62° F.
1 ounce per sq. in. 1.732 in. of water at 62° F.
2116.3 Ib. per square foot.
I 33.947 ft. of water at 62° F.
;i4.71b. per sqJn.) - j ™%i>21in, ofm^curfat 32' F,
760 millimetres of mercury at 32° F.
i 0.03609 Ib. or .5774 oz. per sq. in.
1 inch of water at 62° F. = •< 5.196 Ib. per square foot.
0.0735 in. of mercury at 62° F.
1 foot of water at 62° F. - ™ » P
_j
H
0.491 Ib. or 7.86 oz. per sq. in.
1 inch of mercury at 62° F. = -{ 1.134 ft. of water at 62° F.
( 13.61 in. of water at 62° F.
Weight of One Cubic Foot of Pure Water.
At 32° F. (freezing-point) 62.418 Ib.
" 39.1° F. (maximum density) 62.425 '
" 62° F. (standard temperature) in vacuo 62.355 "
" 212° F. (boiling-point, under 1 atmosphere) 59.76
American gallon = 231 cubic ins. of water at 62° F. = 8.3356 Ib.
British " = 277.274 " " " " " = 10 Ib.
Weight of 1 cu. ft. of air-free distilled water at 62°, weighed in air at
62° with brass weights of 8. 4 density = 62.287 Ib. = 8.3267 Ib. per U. S.
gallon.
Weight and Volume of Air.
1 cubic ft. of air at 32° F. and atmospheric pressure weighs 0.080728 Ib.
i tt. «„ v.~'~i~4- f •„ +. ooo ™ i 0.0005606 Ib. per sq. in.
. in height of air at 3. \ 0.015534 inches of water at 62° F.
For air at any other temperature T° Fahr. multiply by 492 -=- (460 + T).
1 Ib. pressure per sq. ft. = 12.387 ft. of air at 32° F.
1 " " sq. in. = 1784. " " " "
1 inch of water at 62° F. = 64.37 " " " "
For air at any other temperature multiply by (460 + T) -~ 492.
At any fixed temperature the weight of a given volume is proportional
to the absolute pressure.
Measures of Work, Power, and Duty.
Unit of work. — One foot-pound, i.e., a pressure of one pound exerted
through a space of one foot.
Horse-power. — The rate of work. Unit of horse-power = 33,000
f t.-lb. per minute, or 550 ft.-lb. per second = 1 ,980,000 ft.-lb. per hour.
Heat unit. = heat required to raise 1 Ib. of water 1° F. (see page 560).
00 (")(")()
Horse-power expressed in heat-units = ' ~ = 42.442 heat-units per
minute = 0.7074 heat-unit per second = 2546.5 heat units per hour.
1 Ib. of fuel per H.P. per hour = 1,980,000 ft.-lb. per Ib. of fuel.
1,000,000 ft.-lb. per Ib. of fuel = 1.98 Ib. of fuel per H.P. per hour.
5280 ^2
Velocity. — Feet per second = %QQQ = Is x miles Per hour.
tons per mile = 2240 = 14 lb< per yarci (sin£le rail) •
28
ARITHMETIC.
WIRE AND SHEET-METAL GAUGES COMPARED.
•8^
<jj §3
*§ §
So®
Irl
.po
S * 5s
•gi°
ing's and
iburn &
:'s Gauge.
»
— « ajo
- O o
J§ a)-22
yt'G nj
%«%
!"2 §
^B° .
<gl|i
Ui
l«£a-
;s o> c^05
« <*§ cS
9
|a
S c8
go
g-2 ^
oc £
Sg£
|2&
•§"§ ®
|||
J-li
pill
3 ™ c8
*e£i
p £s
1°
inch.
inch.
inch.
inch.
inch.
inch.
inch.
0000000
.49
.500
.6666
.5
7/o
000000
.46
464
.625
.469
6,0
00000
.43
.432
.5883
.438
5/o
0000
.454
.46
.393
.4
.406
000
.425
.40964
.362
.372
.500
.375
3/2
00
.38
.3648
.331
.348
.4452
344
2/n
0
.34
.32486
.307
.324
.3964
.313
0
.3
.2893
.283
227
.3
.3532
.281
1
2
.284
.25763
.263
.219
.276
.3147
266
2
3
.259
.22942
.244
.212
.252
.2804
.25
3
4
.238
J20431
.225
.207
.232
.250
.234
4
5
.22
.18194
.207
.204
.212
.2225
,219
5
6
.203
.16202
.192
.201
.192
.1981
.203
6
7
.18
.14428
.177
.199
.176
.1764
.188
7
6
.165
.12849
.162
.197
.16
.1570
.172
8
9
.148
.11443
.148
.194
.144
.1398
.156
9
10
.134
.10189
.135
.191
.128
.1250
.141
10
11
.12
.09074
.12
.188
.116
.1113
.125
11
12
.109
.08081
.105
.185
.104
.0991
.109
12
13
.095
.07196
.092
.182
.092
.0882
.094
13
14
.033
.06403
,08
.180
.08
.0785
078
14
15
.072
.05707
.072
.178
.072
.0699
.07
15
16
.065
.05082
.063
.175
.064
.0625
.0625
16
17
.058
.04526
.054
.172
.056
.0556
.0563
17
18
.049
.0403
.047
.168
.048
.0495
.05
18
19
.042
.03589
.041
164
.04
.0440
.0433
19
20
.035
.03196
.035
.161
.036
.0392
.0375
20
21
.032
.02846
.032
.157
.032
.0349
.0344
21
22
.028
.02535
.028
.155
.028
.03125
.0313
22
23
.025
.02257
.025
.153
.024
.02782
0281
23
24
.022
.0201
.023
.151
.022
.02476
.025
24
25
.02
.0179
.02
.148
.02
.02204
.0219
25
26
.018
.01594
.018
.146
.018
.01961
.0188
26
27
.016
.01419
.017
.143 • .0164
.01745
.0172
27
28
.014
.01264
.016
.139 .0148
.015625
.0156
28
29
.013
.01126
.015
.134 .0136
.0139
.0141
29
30
.012
.01002
.014
.127 .0124
.0123
.0125
30
31
.01
.00893
.013
.120
.0116
.0110
.0109
31
32
.009
.00795
.013
.115
.0108
.0098
.0101
32
33
.008
.00708
.011
.112
.01
.0037
.0094
33
34
.007
,0063
.01
.110
.0092
.0077
.0086
34
35
.005
.00561
.0095
.103
.0084
.0069
.0078
35
36
.004
.005
.009
.106
.0076
.0061
.007
36
37
.00445
.0085
.103
.0068
.0054
.0066
37
38
.00396
.008
.101
.006
.0048
.0063
38
39
.00353
.0075
.099
.0052
.0043
39
40
.00314
.007
.097
.0048
.00386
40
41
.095
.0044
.00343
41
42
.092
.004
.00306
42
43
.088
.0036
.00272
43
44
.085
.0032
.00242
44
45
.081
.0028
.00215
45
46
.079
.0024
.00192
46
47
.077
.002
.00170
47
• 48
.075
.0016
.00152
48
49
.072
.0012
.00135
49
50
.065
.001
.00120
50
WIRE AND SHEET METAL GAUGES , 29
THE EDISON OB CIRCULAR MIL WIRE GAUGE.
(For table of copper wires by this gauge, giving weights, electrical
resistances, etc., see Copper Wire.)
Mr. C. J. Field (Stevens Indicator, July, 1887) thus describes the origin
of the Edison gauge:
The Edison company experienced inconvenience and loss by not having
a wide enough range nor sufficient number of sizes in the existing gauges.
This was felt more particularly in the central-station work in making
electrical determinations for the street system. They were compelled to
make use of two of the existing gauges at least, thereby introducing a
complication that was liable to lead to mistakes by the contractors and
linemen.
In the incandescent system an even distribution throughout the entire
system and a uniform pressure at the point of delivery are obtained by
calculating for a given maximum percentage of loss from the potential as
delivered from the dynamo. In carrying this out, on account of lack of
regular sizes, it was often necessary to use larger sizes than the occasion
demanded, and even to assume new sizes for large underground conductors.
The engineering department of the Edison company, knowing the require-
ments, have designed a gauge that has the widest range obtainable and
a large number of sizes which increase in a regular and uniform manner.
The basis of the graduation is the sectional area, and the number of the
wire corresponds. A wire of 100,000 circular mils area is No. 100; a wire
of one half the size will be No. 50; twice the size No. 200.
In the older gauges, as the number increased the size decreased. With
this gauge, however, the number increases with the wire, and the number
multiplied by 1000 will give the circular mils.
The weight per mil-foot, 0.00000302705 pounds, agrees with a specific
gravity of 8.889, which is the latest figure given for copper. The ampere
capacity which is given was deduced from experiments made in the com-
pany's laboratory, and is based on a rise of temperature of 50° F. in the
wire.
In 1893 Mr. Field writes, concerning gauges in use by electrical engineers:
The B. and S. gauge seems to be in general use for the smaller sizes, up
to 100,000 c.m., and in some cases a little larger. From between one and
two hundred thousand circular mils upwards, the Edison gauge or its
equivalent is practically in use, and there is a general tendency to desig-
nate all sizes above this in circular mils, specifying a wire as 200,000,
400,000, 500,000, or 1,000,000 C.M.
In the electrical business there is a large use of copper wire and rod and
other materials of these large sizes, and in ordering them, speaking of
them, specifying, and in every other use, the general method is to simply
specify the circular milage. I think it is going to be the only system in
the future for the designation of wires, and the attaining of it means
practically the adoption of the Edison gauge or the method and basis of
this gauge as the correct one for wire sizes.
THE U. S. STANDARD GAUGE FOR SHEET AND
PLATE IRON AND STEEL, 1893.
There is in this country no uniform or standard gauge, and the same
numbers in different gauges represent different thicknesses of sheets or
plates. This has given rise to much misunderstanding and friction
between employers and workmen and mistakes and fraud between dealers
and consumers.
An Act of Congress in 1893 established the Standard Gauge for sheet
Iron and steel which is given on the next page. It is based on the fact that
a cubic foot of iron weighs 480 pounds.
A sheet of iron 1 foot square and 1 inch thick weighs 40 pounds, or 640
ounces, and 1 ounce in weight should be 1/640 inch thick. The scale has
been arranged so that each descriptive number represents a certain
number of ounces in weight and an equal number of 640ths of an inch in
thickness.
The law enacts that on and after July 1, 1893, the new gauge shall be
used in determining duties and taxes levied on sheet and plate iron and
(Continued on page 32.}
30
ARITHMETIC.
Edison, or Circular Mil Gauge for Electrical Wires.
Gauge
Num-
ber.
Circular
Mils.
Diam-
eter in
Mils.
Gauge
Num-
ber.
Circular
Mils.
Diam-
eter in
Mils.
Gauge
Num-
ber.
Circular
Mils.
Diam-
eter in
Mils.
3
3,000
54.78
70
70,000
264.58
190
190,000
435.89
5
5,000
70.72
75
75,000
273.87
200
200,000
447.22
8
8,000
89.45
80
80,000
282.85
220
220,000
469.05
12
12,000
109.55
85
85,000
291.55
240
240,000
489.90
15
15,000
122.48
90
90,000
300.00
260
260,000
509.91
20
20,000
141.43
95
95,000
308.23
280
280,000
529.16
25
25,000
158.12
100
100,000
316.23
300
300,000
547.73
30
30,000
173.21
110
110,000
331.67
320
320,000
565.69
35
35,000
187.09
120
120,000
346.42
340
340,000
583.10
40
40,000
200.00
130
130,000
360.56
360
360,000
600.00
45
45,000
212.14
140
140,000
374.17
50
50,000
223.61
150
150,000
387.30
55
55,000
234.53
160
160,000
400.00
60
60,000
244.95
170
170,000
412.32
65
65,000
254.96
180
180,000
424.27
Twist Drill and Steel Wire Gauge.
(Manufacturers Standard)
No.
Size.
No.
Size.
No.
Size.
No.
Size.
No.
Size.
No.
Size.
inch.
inch.
inch.
inch.
inch.
inch.
1
0.2280
14
0.1820
27
0.1440
40
0.0980
53
0.0595
67
0.0320
2
.2210
15
.1800
28
.1405
41
.0960
54
.0550
68
.0310
.2130
16
.1770
29
.1360
42
.0935
55
.0520
69
.0292
4
.2090
17
.1730
30
.1285
43
.0890
56
.0465
70
.0280
5
.2055
18
.1695
31
.1200
44
.0860
57
.0430
71
.0260
6
.2040
19
.1660
32
.1160
45
.0820
58
.0420
72
.0250
7
.2010
20
.1610
33
.1130
46
.0810
59
.0410
73
.0240
8
.1990
21
.1590
34
.1110
47
.0785
60
.0400
74
.0225
9
.1960
22
.1570
35
.1100
48
.0760
61
.0390
75
.0210
10
.1935
23
.1540
36
.1065
49
.0730
62
.0380
76
.0200
11
.1910
24
.1520
37
.1040
50
.0700
63
.0370
77
.0180
12
.1890
25
.1495
38
.1015
51
.0670
64
.0360
78
.0160
13
.1850
26
.1470
39
.0995
52
.0635
65
.0350
79
.0145
66
.0330
80
.0135
Stubs' Steel Wire Gauge.
(For Nos. 1 to 50 see table on page 31.)
No.
Size.
No.
Size.
No.
Size.
No.
Size.
No.
Size.
No.
Size.
z
inch.
.413
P
inch.
.323
F
inch.
.257
51
inch.
.066
61
inch.
.038
71
inch.
.026
Y
.404
O
.316
Fi
.250
52
.063
62
.037
72
.024
X
.397
N
.302
D
.246
53
.058
63
.036
73
.023
w
.386
M
.295
0
.242
54
.055
64
.035
74
.022
V
.377
T,
.290
B
.238
55
.050
65
.033
75
.020
TT
.368
K
.281
A
.234
56
.045
66
.032
76
.018
T
.358
,T
.277
1
(See
57
.042
67
.031
77
.016
8
.348
T
.272
to
{page
58
.041
68
.030
78
.015
fi
.339
H
.266
50
(29
59
.040
69
.029
79
.014
Q
.332
G
.261
60
.039
70
.027
80
.013
The Stubs' Steel Wire Gauge is used in measuring drawn steel wire or
drill rods of Stubs' make, and is also used by many makers of American
drill rods.
WIRE AND SHEET METAL GAUGES.
31
U. S. STANDARD GAUGE FOR SHEET AND PLATE
IRON AND STEEL, 1893.
Number of
Gauge.
Approximate
Thickness in
Fractions of
an Inch.
** 9
8 «-a * .
HIP
fr*
Approximate
Thickness
in
Millimeters.
Weight per
Square Foot
in Ounces
Avoirdupois.
Weight per
Square Foot
in Pounds
Avoirdupois.
fit
^§5
|§S
^£.2
Weight per
Square Meter
in Kilograms.
1 Weight per Sq. 1
M eter in Founds!
Avoirdupois. |
0000000
1-2
0.5
12.7
320
20.
9.072
97.65
215.28
000000
15-32
0.46875
1 1 .90625
300
18.75
8.505
91.55
201.82
00000
7-16
0.4375
11.1125
280
17.50
7.938
85.44
188.37
0000
13-32
0.40625
10.31875
260
16.25
7.371
79.33
174.91
000
3-8
0.375
9.525
240
15.
6.804
73.24
161.46
00
11-32
0.34375
8.73125
220
13.75
6.237
67.13
148.00
0
5-16
0.3125
7.9375
200
12.50
5.67
61.03
134.55
1
9-32
0.28125
7.14375
180
11.25
5.103
54.93
121.09
2
17-64
0.265625
6.746875
170
10.625
4.819
51.88
114.37
3
1-4
0.25
6.35
160
10.
4.536
48.82
107,64
4
15-64
0.234375
5.953125
150
9.375
4.252
45.77
100.91
5
7-32
0.21875
5.55625
140
8.75
3.969
42.72
94.18
6
13-64
0.203125
5.159375
130
8.125
3.685
39.67
87.45
7
3-16
0.1875
4.7625
120
7.5
3.402
36.62
80.72
. 8
11-64
0.171875
4.365625
110
6.875
3.118
33.57
74.00
9
5-32
0.15625
3.96875
100
6.25
2.835
30.52
67.27
10
9-64
0.140625
3.571875
90
5.625
2.552
27.46
60.55
11
1-8
0.125
3.175
80
5.
2.268
24.41
53.82
12
7-64
0.109375
2.778125
70
4.375
.984
21.36
47.09
13
3-32
0.09375
2.38125
60
3.75
.701
18.31
40.36
14
5-64
0.078125
1 .984375
50
3.125
.417
15.26
33.64
15
9-128
0.0/03125
1 .7859375
45
2.8125
.276
13.73
30.27
16
1-16
0.0625
1.5875
40
2.5
.134
12.21
26.91
17
9-160
0.05625
1 .42875
36
2.25
.021
10.99
24.22
18
1-20
0.05
1.27
32
2.
0.9072
9.765
21.53
19
7-160
0.04375
1.11125
28
.75
0.7938
8.544
18.84
20
3-80
0.0375
0.9525
24
.50
0.6804
7.324
16.15
21
1 1-320
0.034375
0.873125
22
.375
0.6237
6.713
14.80
22
1-32
0.03125
0.793750
20
.25
0.567
6.103
13.46
23
9-320
0.028125
0.714375
18
.125
0.5103
5.49
12.11
24
1-40
0.025
0.635
16
1.
0.4536
4.882
10.76
25
7-320
0.021875
0.555625
14
0.875
0.3969
4.272
9.42
26
3-160
0.01875
0.47625
12
0.75
0.3402
3.662
8.07
27
1 1-640
0.0171875
0.4365625
11
0.6875
0.3119
3.357
7.40
28
1-64
0.015625
0.396875
10
0.625
0.2835
3.052
6.73
29
9-640
0.0140625
0.3571875
9
0.5625
0.2551
7746
6.05
30
1-80
0.0125
0.3175
8
0.5
0.2268
2.441
5.38
31
7-640
0.0109375
0.2778125
7
0.4375
0.1984
2.136
4.71
32
13-1280
0.01015625
0.25796875
' < 61/2
0.40625
0.1843
1.983
4.37
(33
3-320
0.009375
0.238125
6
0.375
0.1701
1.831
4.04
34
11-1280
0.00859375
0.21828125
51/2
0.34375
0.1559
1.678
3.70
35
5-640
0.0078125
0.1984375
5
0.3125
0.1417
1.526
3.36
36
9-1280
0.00703125
0.17859375
4V2
0.28125
0.1276
1.373
3.03
37
17-2560
0.00664062
0.16867187
41/4
0.26562
0.1205
1.297
2.87
38
1-160
0.00625
0.15875
0.25
0.1134
1.221
2.69
-
32
THE DECIMAL GAUGE.
(continued from page 29) steel; and that in its application a variation of
2 1/2 per cent either way may be allowed.
The Decimal Gauge. — The legalization of the standard sheet-
metal gauge of 1893 and its adoption by some manufacturers of
sheet iron have only added to the existing confusion of gauges. A joint
committee of the American Society of Mechanical Engineers and the
American Railway Master Mechanics' Association in 1895 agreed to
recommend the use of the decimal gauge, that is, a gauge whose number
for each thickness is the number of thousandths of an inch in that thick-
ness, and also to recommend " the abandonment and disuse of the various
other gauges now in use, as tending to confusion and error." A notched
gauge of oval form, shown in the cut below, has come into use as a standard
form of the decimal gauge.
In 1904 The Westinghouse Electric & Mfg. Co. abandoned the use of
gauge numbers in referring to wire, sheet metal, etc.
Weight of Sheet Iron and Steel. Thickness by Decimal Gauge.
§
i
Weight per
Square Foot
6
§
m
Weight per
Square Foot
3
.2 •
J*
in Pounds.
!>
'§ '
"£
in Pounds.
•
"OBO
•
09
t>o
1
•
0
£ d
JO ^
o.
O
E £
-£ -tJ
"O
•a
fehfl
i
o^.
® ft-^
'd
^ £
iS
o ~
& 4) •
00 ft,*^
.3
X *
M
*O
"i- ^»
.5
o
X
$5
"*"__ r*
Q
I
ft
0 ft
M
135
02
Q
P
2
1
'a)^ 3
£
0.002
1/500
0.05
0.08
0.082
0.060
1/16-
1.52
2.40
2.448
0.004
1/250
0.10
0.16
0.163
0.065
13/200
1.65
2.60
2.652
0.006
3/500
0.15
0.24
0.245
0.070
7/100
1.78
2.80
2.856
0.008
Vl25
0.20
0.32
0.326
0.075
3/40
1.90
3.00
3.060
0.010
1/100
0.25
0.40
0.408
0.080
2/25
2.03
3.20
3.264
0.012
3/250
0.30
0.48
0.490
0.085
17/200
2.16
3.40
3.468
0.014
7/500
0.36
0.56
0.571
0.090
9/100
2.28
3.60
3.672
0.016
1/64 +
0.41
0.64
0.653
0.095
19/200
2.41
3.80
3.876
0.018
9/500
0.46
0.72
0.734
0.100
1/10
2.54
4.00
4.080
0.020
1/50
0.51
0.80
0.816
0.110
H/100
2.79
4.40
4.488
0.022
H/500
0.56
0.88
0.898
0.125
1/8
3.18
5.00
5.100
0.025
1/40
0.64
.00
.020
0.135
27/200
3.43
5.40
5.508
0.028
7/250
0.71
.12
.142
0.150
3/20
3.81
6.00
6.120
0.032
1/32 +
0.81
.28
.306
0.165
33/200
4.19
6.60
6.732
0.036
9/250
0.91
.44
.469
0.180
9/50
4.57
7.20
7.344
0.040
1/25
1.02
.60
.632
0.200
1/5
5.08
8.00
8.160
0.045
9/200
1.14
.80
.836
0.220
n/50
5.59
8.80
8.976
0.050
1/20
1.27
2.00
2.040
0.240
6.10
9.60
9.792
0.055
11/200
1.40
2.20
2.244
0.250
i/f
6.35
10.00
10.20C
ALGEBRA. 33
ALGEBRA.
Addition. — Add a, b, and — c. Ans. a 4 b — c.
Add 2a and - 3a. Ans. - a. Add 2ab, - Sab, - c, - 3c. Ans,
- ab - 4c. Add a2 and 2a. Ans. a2 -f 2a.
Subtraction. — Subtract a from b. Ans. & — a. Subtract — a from
— 6. Ans. — b + a.
Subtract b + c from a. Ans. a — 6 — c. Subtract 3a26 — 9c from
4a26 -f c. Ans. a26 + lOc. RULE: Change the signs of the subtrahend
and proceed as in addition.
Multiplication. — Multiply a by b. Ans. ab. Multiply ab by a + b.
Ans. a26 + ab2.
Multiply a 4- b by a 4 6. Ans. (a 4-6) (a46)=a24-2a&+62.
Multiply — a by — b. Ans. ab. Multiply —a by b. Ans. — a&.
Like signs give plus, unlike signs minus.
Powers of numbers. — The product of two or more powers of any
number is the number with an exponent equal to the sum of the powers:
a2 x a3 = a5; a262 X ab = a363; - 7ab X 2ac = - 14ft26c.
To multiply a polynomial by a monomial, multiply each term of the
polynomial by the monomial and add the partial products: (6a — 36)
X 3c = I8ac - 96c.
To multiply two polynomials, multiply each term of one factor by each
term of the other and add the partial products: (5a — 66) X (3a — 46)
= 15a2 - 38a6 4- 2462.
The square of the sum of two numbers = sum of their squares + twice
their product.
The square of the difference of two numbers = the sum of their squares
— twice their product.
The product of the sum and difference of two numbers = the difference
of their squares:
(a 4- 6)2 = a2 4- 2a6 4- 62; (a - 6)2 = a2 - 2a6 4- &2;
(a 4- 6) X (a - 6) = a2 - 62.
The square of half the sums of two quantities is equal to their product
plus the square of half their difference: (^^Y = ab + (^-bY-
The square of the sum of two quantities is equal to four times their
products, plus the square of their difference: (a + 6)2 = 4a6 4- (a — 6)2.
The sum of the squares of two quantities equals twice their product,
plus the square of their difference: a2 + 62 = 2a6 4- (a — 6)2.
The square of a trinomial == square of each term 4 twice the product
of each term by each of the terms that follow it: (a + 6 4 c)2 = a2 4 62
4 c2 4- 2a6 4- 2ac + 2bc; (a — b - c)? = -a2 + 62 + c* - 2a6- 2ac + 2bc.
The square of (any number 4- 1/2) = square of the number + the number
+ 1/4; = the number X (the number 4- 1) 4- 1/4: (a+ i/2)2 = a2 4- a 4- 1/4,
= a (a + 1) 4- 1/4- (4l/2)2 = 42 + 4 4- 1/4=4 X 5 + 1/4 = 201/4.
The product of any number 4- 1/2 by any other number + 1/2 = product
of the numbers 4- half their sum 4- 1/4. (a + i/2) X (6 4- 1/2) = ab + 1/2(0 46)
4 1/4. 4l/2 X 6V2 = 4X64- i/2(4 4- 6) 4- V4 = 24 4- 5 4- 1/4 = 29V4.
Square, cube, 4th power, etc., of a binomial a 4- 6.
(a 4 6)2 = a2 4- 2a6 4- 62; (a 4- 6)3 = a3 4- 3a26 + 3a62 4- 6«
(a 4- 6)4 = a4 4- 4a36 4- 6a262 4- 4a63 4- 64.
In each case the number of terms is one greater than the exponent of
the power to which the binomial is raised.
2. In the first term the exponent of a is the same as the exponent of the
power to which the binomial is raised, and it decreases by 1 in each suc-
ceeding term.
3. 6 appears in the second term with the exponent 1, and its exponent
increases by 1 in each succeeding term.
4. The coefficient of the first term is 1.
5. The coefficient of the second term is the exponent of the power to
which the binomial is raised.
34 ALGEBRA.
6. The coefficient of each succeeding term is found from the next pre-
ceding term by multiplying its coefficient by the exponent of a, and
dividing the product by a number greater by 1 than the exponent of b.
(See Binomial Theorem, below.)
Parentheses. — When a parenthesis is preceded by a plus sign it may
be removed without changing the yalue of the expression: a + b + (a +
b) = 2a + 2b. When a parenthesis is preceded by a minus sign it may
be removed if we change the signs of all the terms within the parenthesis:
1 — (a — b — c) = 1 — a + b + c. When a parenthesis is within a
parenthesis remove the inner one first: a — [6 — {c — (d — e)}] = a — [ft —
{c — d + ej]= a - [b - c + d - e] = a - b + c — d + e.
A multiplication sign, X, has the effect of a parenthesis, in that the
operation indicated by it must be performed before the operations of
addition or subtraction, a 4- b X a + b = a + ab + b; while (a -f- 6)
X (a + 6) = a2 + 2ab + 62, and (a + b) X a + b = a2 + ab + b.
The absence of any sign between two parentheses, or between a quan-
tity and a parenthesis, indicates that the parenthesis is to be multiplied by
the quantity or parenthesis: a(a + b + c) = a2 + ab + ac.
Division. — The quotient is positive when the dividend and divisor
have like signs, and negative when they have unlike signs: abc -*- b = ac;
abc •*• — 6 = — ac.
To divide a monomial by a monomial, write the dividend over the
divisor with a line between them. If the expressions have common factors,
remove the common factors:
azbx ax a4 a3 1
azbx -*• aby = -r — = — ; —, = a; -7 = -^ = a~~2.
aby y a3 'a6 a2
To divide a polynomial by a monomial, divide each term of the poly-
nomial by the monomial: (Sab — 12ac) -5- 4a = 26 — 3c.
To divide a polynomial by a polynomial, arrange both dividend and
divisor in the order of the ascending or descending powers of some common
letter, and keep this arrangement throughout the operation.
Divide the first term of the dividend by the first term of the divisor, and
write the result as the first term of the quotient.
Multiply all the terms of the divisor by the first term of the quotient
and subtract the product from the dividend. If there be a remainder,
consider it as a new dividend and proceed as before: (a2 — b2) -*• (a + b).
a2 - 62 I a + b.
a2 + ab I a — b.
- ab -~~&~
- ab - ft2.
The difference of two equal odd powers of any two numbers is divisible
by their difference but not by their sum:
The difference of two equal even powers of two numbers is divisible by
their difference and also by their sum: (a2 — b2) -5- (a — 6) = a -4- 6.
The sum of two equal even powers of two numbers is not divisible by
either the difference or the sum of the numbers; but when the exponent
of each of the two equal powers is composed of an odd and an even factor,
the sum of the given power is divisible by the sum of the powers expressed
by the even factor. Thus x6 + y6 is not divisible by x -f y or by x — y,
but is divisible by x2 + if.
Simple equations. — An equation is a statement of equality between
two expressions; as, a + b = c + d.
A simple equation, or equation of the first degree, is one which contains
only the first power of the unknown quantity. If equal changes be made
(by addition, subtraction, multiplication, or division) in both sides of an
equation, the results will be equal.
Any term may be changed from one side of an equation to another,
provided its sign be changed: a+b = c+d\a^c+d — b. To solve
ALGEBRA. 35
an equation having one unknown quantity, transpose all the terms involv-
ing the unknown quantity to one side of the equation, and- all the other
terms to the other side; combine like terms, and divide both sides by the
coefficient of the unknown quantity.
Solve Sx - 29 - 26 - 3x. Sx + 3x = 29 4- 26; llx = 55; x = 5, ans.
Simple algebraic problems containing one unknown quantity are solved
by making x = the unknown quantity, and stating the conditions of the
problem in the form of an algebraic equation, and then solving the equa-
tion. What two numbers are those whose sum is 48 and difference 14?
Let x = the smaller number, re 4- 14 the greater, x + x + 14 = 48.
2x = 34, x = 17; x -I- 14 = 31, ans.
Find a number whose treble exceeds 50 as much as its double falls short
of 40. Lets = the number. 3x - 50 = 40 - 2x; 5x « 90; a; = 18, ans.
Proving, 54 - 50 = 40 - 36.
Equations containing two unknown quantities. — If one equation
contains two unknown quantities, x and y, an indefinite number of pairs
of values of x and y may be found that will satisfy the equation, but if a
second equation be given only one pair of values can be found that will
satisfy both equations. Simultaneous equations, or those that may be
satisfied by the same values of the unknown quantities, are solved by
combining the equations so as to obtain a single equation containing only
one unknown quantity. This process is called elimination.
Elimination by addition or subtraction. — Multiply the equation by
such numbers as will make the coefficients of one of the unknown quanti-
ties equal in the resulting equation. Add or subtract the resulting equa-
tions according as they have unlike or like signs.
M
Substituting value of ?/ in first equation, 2x 4- 3 = 7; x = 2.
Elimination by substitution. — From one of the equations obtain the
value of one of the unknown quantities in terms of the other. Substi-
tute for this unknown quantity its value in the other equation and reduce
the resulting equations.
4 3y ^ 7. Multiply by 2: . _„
- by = 3. Subtract : 4a? — 5y — 3 l\y - 11 ; y => 1«
c^irr^ f 2.r + 3y = 8. (1). From (1) we find x
bolvel3z +7y = 7. (2).
Substitute this value in (2): 3 (8 ~ 3?/) 4-7^ = 7; =
whence y = - 2. Substitute this value in (1): 2x — 6 = 8; x = 7.
Elimination by comparison. — From each equation obtain the value of
one of the unknown quantities in terms of the 9ther. Form an equation
from these equal values, and reduce this equation.
Solve 2x — 9y = 11. (1) and 3x - 4y = 7. (2). From (1) we find
From (2) we find x
Equating these values of x, ll t 9^ = 7 ~t 4y ; IQy - - 19; y = - 1.
»j O
Substitute this value of y in (1): 2x 4-9 = 11; x = 1.
If three simultaneous equations are given containing three unknown
quantities, one of the unknown quantities must be eliminated between two
pairs of the equations; then a second between the two resulting equations.
Quadratic equations. — A quadratic equation contains the square of
the unknown quantity, but no higher power. A pure quadratic contains
the square only; an affected quadratic both the square and the first power.
To solve a pure quadratic, collect the unknown quantities on one side,
id the known quantities on the other; divide by the coefficient of the
iknown quantity and extract the square root of each side of the resulting
[nation.
Solve 3z2 - 15 = 0. 3z* = 15; x* = 5; x = >/5.
A root like x/5, which is indicated, but which can be found only approxi-
' Ay. is called a surd.
36 ALGEBRA.
Solve 3a* + 15 - 0. 3z?= - 15; a* = - 5; x = v.
The square root of — 5 cannot be found even approximately, fo/ tha
square of any number positive or negative is positive; therefore a root
which is indicated, but cannot be found even approximately, is called
imaginary.
To solve an affected quadratic, 1. Convert the equation into the form
a*x2 ± 2abx = c, multiplying or dividing the equation if necessary, so as
to make the coefficient of x2 a square number.
2. Complete the square of the first member of the equation, so as to
convert it to the form of a2x2 ± 2abx + b2, which is the square of the
binomial ax ± &, as follows: add to each side of the equation the square of
the quotient obtained by dividing the second term by twice the square
root of the first term.
3. Extract the square root of each side of the resulting equation.
Solve 3.*2 - 4.r = 32. To make the coefficient of x2 a square number,
multiply by 3 : 9x2 - I2x = 96; I2x + (2 X 3x) = 2; 22 = 4.
Complete the square: 9x2 — I2x + 4 = 100. Extract the root:
3x — 2 =• ±10, whence x = 4 or — 22/3. The square root of 100 is
either + 10 or — 10, since the square of — 10 as well as + 102 = 100.
Every affected quadratic may be reduced to the form ax*+bx+c=-Q.
The solution of this equation is x = -- - —
Problems involving quadratic equations have apparently two solutions,
as a quadratic has two roots. Sometimes both will be true solutions, but
generally one only will be a solution and the other be inconsistent with the
conditions of the problem.
The sum of the squares of two consecutive positive numbers is 481.
Find the numbers.
Let x =. one number, x+1 the other. z2 + (x -f I)2 = 481. 2x* -f
2x + 1 = 481.
x2 + x = 240. Completing the square, x2 +x -f 0.25 = 240.25.
Extracting the root we obtain x + 0.5 = ± 15.5; x = 15 or - 16. The
negative root — 16 is inconsistent with the conditions of the problem.
Quadratic equations containing two unknown quantities require
different methods for their solution, according to the form of the equations.
For these methods reference must be made to works on algebra.
Theory of exponents. — %a when n is a positive integer is one of n
equal factors of a. \o™ means a is to be raised to the with power and the
nth root extracted.
tnat the nth root of a is to be taken and the result
raised to the with power.
«\/a™ = ( \l~a\m = an. When the exponent is a fraction, the numera-
tor indicates a power, and the denominator a root. a6/2 = v/a6 = a3;
a3/2 = Va3 = a1- s.
To extract the root of a quantity raised to an indicated power, divide
the exponent by the index of the required root; as,
Subtracting 1 from the exponent of a is equivalent to dividing by a:
02-i= a' =o; a'-i = a« - ^- 1; a°-i = a~> ~ i; a-»-i=a-2=l.
A number with a negative exponent denotes the reciprocal of the num-
ber with the corresponding positive exponent.
A factor under the radical sign whose root can be taken may, by having
the root taken, be removed from under the radical sign:
GEOMETRICAL PROBLEMS.
37
A factor outside the radical sign may be raised to the corresponding
power and placed under it:
Binomial Theorem.
sion of the form x + a
- To obtain any power, as the nth, of an expres-
•x* +
etc. *~* i-2-3-
The following laws hold for any term in the expansion of (a 4- x)n.
The exponent of x is less by one than the number of terms.
The exponent of a is n minus the exponent of x.
The last factor of the numerator is greater by one than the exponent of a.
The last factor of the denominator is the same as the exponent of x.
In the rth term the exponent of x will be r — 1.
The exponent of a will be n — (r — 1), or n — r 4- 1.
The last factor of the numerator will be n — r 4- 2.
The last factor of the denominator will be = r — 1.
Hence the rth term = "(» - D(» - 2) . (« - r+ 2) ^
l.^.O....^?* — 1^
GEOMETRICAL PROBLEMS.
1. To bisect a straight line, or
an arc of a circle (Fig. 1). — From
the ends A, B, as centres, describe
arcs intersecting at C and D, and
draw a line through C and D which
will bisect the line at E or the arc
at F.
2. To draw a perpendicular to
a straight line, or a radial line to
a circular arc. — Same as in
Problem 1. C D is perpendicular to
the line A B, and also radial to the
arc.
3. To draw a perpendicular to
a straight line from a given point
in that line (Fig. 2). — With any
radius, from the given point A in the
line B C, cut the line at B and C.
With a longer radius describe arcs
from B and C, cutting each other at
D, and draw the perpendicular D A.
4. From the end A of a given
line A D to erect a perpendicular
AE (Fig. 3). — From any centre F,
above A D, describe a circle passing
through the given point A , and cut-
ting the given line at D. Draw D F
and produce it to cut the circle at Et
and draw the perpendicular A E.
Second Method (Fig. 4). — From
the given point A set off a distance
A E equal to .three parts, by any
scale; and on the centres A and E,
with radii of four and five parts
respectively, describe arcs intersect-
ing at C, Draw the perpendicular
A C.
NOTE. — This method is most
useful on very large scales, where
straight edges are inapplicable. Any
multiples of the numbers 3, 4, 5 may
be taken with the same effect, as 6, &
10, or 9, 12. 15.
38
GEOMETRICAL PROBLEMS.
5. To draw a perpendicular to
a straight line from any point
without it (Fig. 5). — From the
point A, with a sufficient radius cut
the given line at F and G, and from
these points describe arcs cutting at
E. Draw the perpendicular A E.
6. To draw a straight line
parallel to a given line, at a given
distance apart (Fig. 6). — From
the centres A, B, in the given line,
with the given distance as radius,
describe arcs (7, D, and draw the
parallel lines C D touching the arcs.
7. To divide a straight line into
a number of equal parts (Fig. 7).
— To divide the line A B into, say,
five parts, draw the line A C at an
angle from A ; set off five equal parts;
draw B5 and draw parallels to it
from the other points of division in
A C. These parallels divide A B as
required.
NOTE. — By a similar process a
line may be divided into a number
of unequal parts; setting off divisions
on A C, proportional by a scale to the
required divisions, and drawing
parallels cutting A B. The triangles
All, A 22, A33, etc., are similar
triangles.
8. Upon a straight line to draw
an angle equal to a given angle
(Fig. 8). — Let A be the given angle
and F G the line. From the point A
with any radius describe the arc D E.
From F with the same radius
describe I H. Set off the arc I H
equal to D E, and draw F H. The
angle F is equal to A, as required.
9. To draw angles of 60° and
80° (Fig. 9). — From F, with any
radius F /, describe an arc / H ; and
from /, with the same radius, cut
the arc at H and draw F H to form
the required angle I F H. Draw the
perpendicular H K to the base line to
form the angle of 30° F H K.
10. To draw an angle of 45°
(Fig. 10). — Set off the distance F /;
draw the perpendicular / H equal to
/ Ft and join H "
\.
FIG. 9.
F.
Fto form the angle at
The angle at H is "also 45°.
FIG. 10.
GEOMETRICAL PROBLEMS.
39
FIG. 11.
Fia. 15.
11. To bisect an angle (Fig. 11).
— Let ACB be the angle; with C as
a centre draw an arc cutting the
sides at A, B. From A and B as
centres, describe arcs cutting each
other at Z>. Draw C D, dividing the
angle into two equal parts.
12. Through two given points
to describe an arc of a circle with
a given radius (Fig. 12). — From
the ppints A and B as centres, with
the given radius, describe arcs cut-
ting at C; and from C with the same
radius describe an arc A B.
13. To find the centre of a circle
or of an arc of a circle (Fig. 13). —
Select three points, A, B, C, in the
circumference, well apart; with the
same radius describe arcs from these
three points, cutting each other, and
draw the two lines, D E, FG,
through their intersections. The
point O, where they cut, is the centre
of the circle or arc.
To describe a circle passing
through three given points. —
Let A, B, C be the given points, and
proceed as in last problem to find the
centre O, from which the circle may
be described.
14. To describe an arc of a
circle passing through three
given points when the centre is
not available (Fig. 14). — From
the extreme points A, B, as
centres, describe arcs AH, B G.
Through the third point C draw
A E: B F, cutting the arcs.
Divide A F and B E into any
number of equal parts, and set
off a series of equal parts of the
same length on the upper por-
tions of the arcs beyond the
points E F. Draw straight
lines, B L, BM, etc., to the
divisions in A F, and A I, A K,
etc., to the divisions in EG.
The successive intersections N,
O, etc., of these lines are points
in the circle required between the
given points A and C, which may
be drawn in; similarly the remain-
ing part of the curve BC may
be described. (See also Problem
54.)
15. To draw a tangent to a
circle from a given point in the
circumference (Fig. 15). — Through
the given point A, draw the radial
line A C, and a perpendicular to it,
FGt which is "the tangent required.
40
GEOMETRICAL PROBLEMS.
16. To draw tangents to a
circle from a point without it (Fig.
16). — From A, with the radius
A C, describe an arc BCD, and
from C, with a radius equal to the
diameter of the circle, cut the arc at
BD. Join BC, CD, cutting the
circle at E F, and draw A E, AF,
the tangents.
NOTE. — When a tangent is
already drawn, the exact point of
contact may be found by drawing a
perpendicular to it from the centre.
17. Between two inclined lines
to draw a series of circles touching
these lines and touching each
other (Fig. 17). — Bisect the inclina-
tion of the given lines A B, C D, by
the line N O. From a point P in this
line draw the perpendicular P B to the
line A B, and on P describe the circle
B D, touching the lines and cutting
the centre line at E. From E draw
E F perpendicular to the centre line,
cutting A B at F, and from F
describe an arc E G, cutting A B at
G. Draw GH parallel to B P,
giving H, the centre of the next
circle, to be described with the
radius HE, and so on for the next
circle IN.
Inversely, the largest circle may
be described first, and the smaller
ones in succession. This problem is
of frequent use in scroll-work.
18. Between two inclined lines
to draw a circular segment tan-
gent to the lines and passing
through a point F on the line FC
which bisects the angle of the
lines (Fig. 18). — Through F draw
DA at right angles to FC; bisect
the angles A and Z), as in Problem
11, by lines cutting at C, and from
C with radius C F draw the arc H F G
required.
19. To draw a circular arc that
will be tangent to two given lines
AB and C D inclined to one another,
one tangential point E being given
(Fig. 19). — Draw the centre line
GF. From E draw E F at right
angles to A B ; then F is the centre
of the circle required.
20. To describe a circular arc
Joining two circles, and touching
one of them at a given point (Fig.
20). — To join the circles A B, FG,
by an arc touching one of them at
F, draw the radius E F, and produce
it both ways. Set off F H equal to
the radius A C of the other circle;
join CH and bisect it with the per-
pendicular L I, cutting E F at I.
On the centre 7, with radius IF,
describe the arc FA as required.
GEOMETRICAL PROBLEMS.
FIG. 22.
E
FIG. 23.
FIG. 24.
FIG. 25.
FIG. 26.
21. To draw a circle with a
given radius R that will be tan-
gent to two given circles A and B
(Fig. 21). — From centre of circle
A with radius equal R plus radius
of A, and from centre of B with
radius equal to R + radius of B,
draw two arcs cutting each other in
C, which will be the centre of the
circle required.
22. To construct an equilateral
triangle, the sides being given
(Fig. 22). — On the ends of one side,
A, B, with A B as radius, describe
arcs cutting at C, and draw A C, C B.
23. To construct a triangle of
unequal sides (Fig. 23). — On
either end of the base A D, with the
side B as radius, describe an arc;
and with the side C as radius, on the
other end of the base as a centre, cut
the arc at E. Join A E, D E.
24. To construct a square on™
given straight line A B (Fig. 24).
— With A B as radius and A and B
as centres, draw arcs A D and B C,
intersecting at E. Bisect E B at
F. With E as centre and E F as
radius, cut the arcs A D and B C
in D and C. Join A C, C Dt and
D B to form the square.
25. To construct a rectangle
with given base E F and height EH
(Fig. 25). — On the base E F draw
the perpendiculars E //, F O equal
to the height, and join G H.
26. To describe a circle about
a triangle (Fig. 26). — Bisect two
sides A B, A C of the triangle at
E F, and from these points draw
perpendiculars cutting at K. On
the centre K, with the radius K A,
draw the circle ABC.
27. To inscribe a circle in a
triangle (Fig. 27).— Bisect two of
the angles A, C, of the triangle by
42
GEOMETRICAL PROBLEMS.
lines cutting at D; from D draw a
perpendicular D E to any side, and
with D E as radius describe a circle.
When the triangle is equilateral,
draw a perpendicular from one of the
angles to the opposite side, and from
the side set off one third of the
perpendicular.
28. To describe a circle about
a square, and to inscribe a square
in a circle (Fig. 28). — To describe
the circle, draw the diagonals A B,
C D of the square, cutting at E. On
the centre E, with the radius A E,
describe the circle.
To inscribe the square. — Draw
the two diameters, A B,C D, at right
angles, and join the points A, B,
C D, to form the square.
NOTE. — In the same way a circle
may be described about a rectangle.
29. To inscribe a circle in a
square (Fig. 29). — To inscribe the
circle, draw the diagonals A B, C D
of the square, cutting at E; draw the
perpendicular E F to one side, and
with the radius E F describe the
circle.
FIG. 28.
A G C
30. To describe a square about
a circle (Fig. 30). — Draw two
diameters A B, C D at right angles.
With the radius of the circle and
A, B, C and D as centres, draw the
four half circles which cross one
another in the corners of the square.
31. To inscribe a pentagon in
a circle (Fig. 31). — Draw diam-
eters A C, B D at right angles, cut-
ting at o. Bisect A o at E, and from
E, with radius E B, cut A C at F;
from B, with radius B F, cut the
circumference at G, H, and with the
same radius step round the circle to
/ and K\ join the points so found to
form the pentagon.
32. To construct a pentagon
on a given line A B (Fig. 32).—
From B erect a perpendicular B C
half the length of A B ; join A C and
prolong it to D, making C D = B C.
Then B D is the radius of the circle
circumscribing the pentagon. From
A and B as centres, with B D as
radius, draw arcs cutting each other
in O, which is the centre of the circle.
FIG. 32.
GEOMETRICAL PROBLEMS.
43
FIG. 34.
33. To construct a hexagon
upon a given straight line (Fig.
33). — From A and B, the ends of
the given line, with radius A B,
describe arcs cutting at g; from gt
with the radius g A, describe a circle;
with the same radius set off the arcs
A G, G F, and B D, D E. Join the
points so found to form the hexagon.
The side of a hexagon = radius of its
circumscribed circle.
34. To inscribe a hexagon in a
circle (Fig. 34). — Draw a diam-
eter ACS. From A and B as
centres, with the radius of the circle
A C, cut the circumference, at D, E,
F, G, and draw A D, D E, etc., to
form the hexagon. The radius of
the circle is equal to the side of the
hexagon; therefore the points D, Et
etc., may also be found by stepping
the radius six times round the circle.
The angle between the diameter and
the sides of a hexagon and also the
exterior angle between a side and an
adjacent side prolonged is 60 degrees;
therefore a hexagon may conven-
iently be drawn by the use of a 60-
degree triangle.
35. To describe a hexagon
about a circle (Fig. 35). — Draw a
diameter A D B, and with the radius
A D, on the centre A, cut the circum-
ference at C; join A C, and bisect it
with the radius D E ; through E draw
FG, parallel to A C, cutting the diam-
eter at F, and with the radius D F
describe the circumscribing circle
F H. Within this circle describe a
hexagon by the preceding problem.
A more convenient method is by use
of a 60-degree triangle. Four of the
sides make angles of 60 degrees with
the diameter, and the other two are
parallel to the diameter.
36. To describe an octagon on
a given straight line (Fig. 36). —
Produce the given line 'A B both
ways, and draw perpendiculars A E.
BF; bisect the external angles^, and
B by the lines A H, B C, which make
equal to A B. Draw C D and H G
parallel to A E, and equal to A B;
from the centres G, D, with the
radius A B, cut the perpendiculars at
E, F, and draw E F to complete the
octagon.
37. To convert a sqaare into
an octagon (Fig. 37). — Draw the
diagonals of the square cutting at e;
from the corners A, B, C, D, with
A e as radius, describe arcs cutting
the sides at gn, fk, hm, and ol, and
join the points so found to form the
octagon. Adjacent sides of an octa-
gon make an angle of 135 degrees.
GEOMETRICAL PROBLEMS.
38. To inscribe an octagon in
a circle (Fig. 38). — Draw two
diameters, A C, B D at right angles;
bisect the arcs A B, B C, etc., at e f,
etc., and join A e, € B, etc., to form
the octagon,
39. To describe an octagon
about a circle (Fig. 39). — P -scribe
a square about the given circle A B;
draw perpendiculars h k, etc., to the
diagonals, touching the circle to
form the octagon.
40. To describe a polygon of
any number of sides upon a given
straight line (Fig. 40). — Produce
the given .line A B, and on A, with the
radius A B, describe a semicircle;
divide the semi-circumference into
as many equal parts as there are to
be sides in the polygon — say, in
this example, five sides. Draw lines
from A through the divisional points
D, b, and c, omitting one point a;
and on the centres B, D, with the
radius A B, cut A b at E and A c at F.
Draw D E, E Ft F B to complete the
polygon.
41. To inscribe a circle within
a polygon (Figs. 41, 42). — When
the polygon has an even number of
sides (Fig. 41), bisect two opposite
sides at A and B; draw A B, and
bisect it at C by a diagonal D E, and
with the radius C A describe the
circle.
When the number of sides is odd
(Fig. 42), bisect two of the sides at A
and B, and draw lines A E, B D to the
opposite angles, intersecting at C;
from <7, with the radius C A, describe
the circle.
42. To describe a circle without
a polygon (Figs. 41, 42). — Find
the centre C as before, and with the
radius C D describe the circle.
43. To inscribe a polygon of
any number of sides within a circle
(Fig. 43). —Draw the diameter A B
and through the centre E draw the
H D G
FIG. 39.
Fio. 42.
GEOMETRICAL PROBLEMS.
45
perpendicular E C, cutting the circle
at F. Divide E F into four equal
parts, and set off three parts equal
to those from F to C. Divide the
diameter A B into as many equal
parts as the polygon is to have sides;
and from C draw C D, through the
second point of division, cutting the
circle at D. Then A D is equal to one
side of the polygon, and by stepping
round the circumference with the
length A D the polygon may be com-
pleted.
Table of Polygonal Angles.
Number
of Sides.
Angle
at Centre.
Number
of Sides.
Angle
at Centre.
Number
of Sides.
Angle
at Centre.
No.
4
5
6
8
Degrees.
120
90
72
60
g*
No.
9
10
11
12
13
14
Degrees.
40
36
gw
i£
No.
15
16
17
18
19
20
Degrees.
22l/2
iH
19
18
In this table the angle at the centre is found by dividing 360 degrees, the
number of degrees in a circle, by the number of sides in the polygon; and
by setting off round the centre of the circle a succession of angles by means
of the protractor, equal to the angle in the table due to a given number of
sides, the radii so drawn will divide the circumference into the same num-
ber of parts.
44. To describe an ellipse when
the length and breadth are given
(Fig. 44). — A B, transverse axis;
C Z>, conjugate axis; F G, foci. The
sum of the distances from C to F
and G, also the sum of the distances
from F and G to any other point in
the curve, is equal to the transverse
axis. From the centre C, with A E
as radius, cut the axis A B at F and
G, the foci; fix a couple of pins into
the axis at F and G, and loop on a
thread or cord upon them equal in
length to the axis A B, so as when
stretched to reach to the extremity
C of the conjugate axis, as shown in
dot-lining. Place a pencil inside the
cord as at //, and guiding the pencil
in this way, keeping the cord equally
in tension, carry the pencil round the
pins F, G, and so describe the
ellipse.
NOTE. — This method is employed
in setting off elliptical garden-plots,
walks, etc.
2d Method (Fig. 45). — Along the
straight edge of a slip of stiff paper
mark off a distance a c equal to A C,
half the transverse axis; and from
the same point a distance a b equal
to C G, half the conjugate axis.
FIG. 44.
GEOMETRICAL PROBLEMS.
Place the slip so as to bring the point b on the line A B of the transverse
axis, and the ppint c on the line D E; and set off on the drawing the posi-
tion of the point a. Shifting the slip so that the point b travels on the
transverse axis, and thexpoint c on the conjugate axis, any number of
points in the curve may be found, through which the curve may be
traced.
3d Method (Fig. 46). — The action
of the preceding method may be
embodied so as to afford the means
of describing a large curve contin-
uously by means of a bar m k, with
steel points m, I, k, riveted into brass
slides adjusted to the length of the
semi-axis and fixed with set-screws.
A rectangular cross E G, with guiding-
slots is placed, coinciding with the
two axes of the ellipse A C and B H.
B7 sliding the points k, I in the slots,
and carrying round the point m, the
curve may be continuously described.
A pen or pencil may be fixed at m.
4th Method (Fig. 47). — Bisect the
transverse axis at C, and through C *
draw the perpendicular D E, making
C D and C E each equal to half the
conjugate axis. From D or E, with
the radius AC, cut the transverse
axis at F, Ff, for the foci. Divide
A C into a number of parts at the
points 1, 2, 3, etc. With the radius
Al on. F and F' as centres, describe
arcs, and with the radius B 1 on the
same centres cut these arcs as shown.
Repeat the operation for the other
divisions of the transverse axis. The
series of intersections thus made are
points in the curve, through which
the curve may be traced.
5th Method (Fig. 48). — On the
two axes A B, D E as diameters, on
centre C, describe circles; from a
number of points a, b, etc., in the
circumference A F B, draw radii cut-
ting the inner circle at a', 6', etc.
From a, b, etc., draw perpendiculars
to AB; and from a', b't etc., draw
parallels to A B, cutting the respec-
tive perpendiculars at n, o, etc. The
intersections are points in the curve,
through which the curve may be
traced.
6to Method (Fig. 49). — When the
transverse and conjugate diameters
are given, A B, CD, draw the tangent
EF parallel to A B. Produce CD,
and on the centre G with the radius
of half A B, describe a semicircle
H D K; from the centre G draw any
number of straight lines to the points
E, r, etc., in the line E Ft cutting the
circumference at /, m, n, etc.; from
the centre O of the ellipse draw
straight lines to the points E, r, etc.;
and from the points I, m, n, etc.,
draw parallels to G C, cutting the
tines O E, O rt etc., at Lt Mt 3v, etc. Fio. 49.
GEOMETRICAL PROBLEMS.
47
These are points in the circumference of the ellipse, and the curve may be
traced through them. Points in the other half of the ellipse are formed
by extending the intersecting lines as indicated in the figure.
45. To describe an ellipse
approximately by means of cir-
cular arcs. — First. — With arcs
of two radii (Fig. 50). — Find the
difference of the semi-axes, and set
it off from the centre O to a and c on
O A and O C; draw ac, and set off
half a c to d; draw d i parallel to a c;
set off O e equal to O d; join e i, and
draw the parallels e m, d m. From
m, with radius m C, describe an arc
through C; and from i describe an
arc through D ; from d and e describe
arcs through A and B. The four
arcs form the ellipse approximately.
NOTE. — This method does not
apply satisfactorily when the con-
jugate axis is less than two thirds of
the transverse axis.
2d Method (by Carl G. Barth, Fig.
51). — In Fig. 51 a b is the major and
c d the minor axis of the ellipse to be
approximated. Lay off b e equal to
the semi-minor axis c O, and use a e
as radius for the arc at each extrem-
ity of the minor axis. Bisect e o at /
and lay off eg equal toef, and use gb
as radius for the arc at each extrem-
ity of the major axis.
method is not considered applicable for cases in which the minor
less than two thirds of the major.
3d Method: With arcs of three radii
(Fig. 52). — On the transverse axis
A B draw the rectangle B G on the
height O C; to the diagonal A C
draw the perpendicular G H D; set
off O K equal to O C, and describe &
semicircle on A K, and produce O C
to L; set off O M equal to C L, and
from D describe an arc with radius
D M] from A, with radius O L, cut
A B at N; from H, with radius HN,
cut arc a b at a. Thus the five
centres D, a, b, H, Hf are found,
from which the arcs are described to
form the ellipse.
This process works well for nearly
all proportions of ellipses. It is used
in striking out vaults and stone
bridges.
4th Method (by F. R. Honey,
Figs. 53 and 54). — Three
radii are employed. With
the shortest radius describe
the two arcs which pass
through the vertices of the
major axis, with the longest
the two arcs which pass
through the vertices of the
minor axis, and with the third
radius the four arcs which
connect the former.
The
axis is
b Jid
FIG. 53.
48
GEOMETRICAL PROBLEMS.
A simple method of determining the radii of curvature is illustrated in
Fig. 53. Draw the straight lines a f and a c, forming any angle at a. With
a as a centre, and with radii a b and a c, respectively, equal to the semi-
minor and semi-major axes, draw the arcs b e and c d. Join e d, and
through b and c respectively draw b g and c f parallel to e d, intersecting
a c at g, and a / at /; a f is the radius of curvature at the vertex of
the minor axis; and a g the radius of curvature at the vertex of the
major axis.
Lay off d h (Fig. 53) equal to one eighth of 6 d. Join e h, and draw c k
and b I parallel to e h. Take a k for the longest radius ( = R), a I for the
shortest radius (= r), and the arithmetical mean, or one half the sum of
the semi-axes, for the third radius (= p), and employ these radii for the
eight-centred oval as follows:
Let a Sander/ (Fig. 54)
be the major and minor
axes. Lay off a e equal
to r, and a f equal to p;
also lay off c g equal to R,
and c h equal to p'. With
g as a centre and gfi as a
radius, draw the arc h k;
with the centre e and
radius e f draw the arc / k, a
intersecting h k at k.
Draw the line g k and
produce it, making g I
equal to R. Draw k e
and produce it, making
k m equal to p. With the
centre g and radius g c
(= R) draw the arc c I;
with the centre k and
radius kl (= p) draw the
arc I m, and with the
centre e and radius e m
(= r) draw the arc m a.
The remainder of the work is symmetrical with respect «,o the
axes.
46. The Parabola. — A parabola (D A C, Fig. 55) is a curve such
that every point in the curve is equally distant from the directrix K L
and the focus F. The focus lies in the axis
A B drawn from the vertex or head of the K P \
curve A, so as to divide the figure into two
equal parts. The vertex A is equidistant
from the directrix and the focus, or A e = A F.
Any line parallel to the axis is a diameter.
A straight line, as E G or DC, drawn across
the figure at right angles to the axis is a
double ordinate, and either half of it is an
ordinp.te. The ordinate to the axis E F G,
drawn through the focus, is called the para-
meter of the axis. A segment of the axis,
reckoned from the vertex, is an abscissa of
the axis, and it is an abscissa of the ordinate
drawn from the base of the abscissa. Thus,
A B is an abscissa of the ordinate B C.
E
«/
A
L
/^
\^\
F
\
n/
O
\
o
\
\
T
o
D B
b
^-a C
FIG. 55.
Abscissae of a parabola are as the squares of their ordinates.
To describe a parabola when an abscissa and its ordinate are given
(Fig. 55). — Bisect the given ordinate B C at a, draw A a, and then a b
perpendicular to it, meeting the axis at 6. Set off A e, A F, each equal to
B b; and draw K e L perpendicular to the axis. Then K L is the directrix
and F is the focus. Through F and any number of points, o, o, etc., in the
axis, draw double ordinates, n o n, etc., and from the centre F, with the
radii F et o e, etc., cut the respective ordinates at E, G, n, n, etc.. The
curve may be traced through these points as shown.
2d Method: By means of a square and a cord (Fig. 56). — Place a
GEOMETRICAL PROBLEMS.
49
FIG. 56.
/
{
y
7
*
9
^
'j_
'i
) d cbaBabad
FIG. 57.
straight-edge to the directrix E N,
and apply to it a square LEG.
Fasten to the end G one end of a
thread or cord equal in length to the
edge E (7, and attach the other end
to the focus F; slide the square along
the straight-edge, holding the cord
taut against the edge of the square
by a pencil D, by which the curve is
described.
3d Method: When the height and
the base are given (Fig. 57). — Let
A B be the given axis, and C D a
double ordinate or base; to describe
a parabola of which the vertex is at
A. Through A draw E F parallel to
C D, and through C and D draw C E
and D F parallel to the axis. Divide
B C arid B D into any number of
equal parts, say five, at a, 6, etc., and
divide C E and D F into the same
number of parts. Through the
points a, b, c, d in the base CD on
each side of the axis draw perpen-
diculars, and through a, b, c, d in C E
and D F draw lines to the vertex A ,
cutting the perpendiculars at e, /, g, h.
These are points in the parabola, and
the curve CAD may be traced as
shown, passing through them.
47. The Hyperbola (Fig. 58). — A hyperbola is a. plane curve, such
that the difference of the distances from any point of it to two fixed points
is equal to a given distance. The
fixed points are called the foci.
To construct a hyperbola. —
Let F/ and F be the foci, and Fe F
the distance Between them. Take a
ruler longer than the distance F1 F,
and fasten one of its extremities vj
the focus F' . At the other extrem
ity, H, attach a thread of such a
length that the length of the ruler
shall exceed the length of the thread
by a given distance A B. Attach
the other extremity of the thread at
the focus F.
Press a pencil, P, against the ruler,
and keep the thread constantly tense,
while the ruler is turned around F' as
a centre. The point of the pencil
will describe one branch of the curve.
2d Method: By points (Fig. 59). —
From the focus F' lay off a distance
F' N equal to the transverse axis, or
distance between the two branches of
the curve, and take any other dis-
tance, as F' II, greater than F' N.
With F' as a centre and F' H as a
radius describe the arc of a circle.
hen with F as a centre and N H as a radius describe an arc intersecting
he arc before described at p and q. These will be points of the hyper-
oia, for F' q — F q is equal to the transverse axis A B.
If, with F as a centre and F' H as a radius, an arc be described, and a
second arc be described with F' as a centre and N H as a radius, two points
in the other branch of the curve will be determined. Hence, by changing
the centres, each pair of radii will determine two points in each branch.
The Equilateral Hyperbola. — The transverse axis of a hyperbola is
FIG. 58.
\P/
FIG. 59.
50
GEOMETRICAL PROBLEMS.
the distance, on a line joining the foci, between the two branches of the
curve. The conjugate axis is a line perpendicular to the transverse axis,
drawn from its centre, and of such a length that the diagonal of the rect-
angle of the transverse and conjugate axes is equal to the distance between
the foci. The diagonals of this rectangle, indefinitely prolonged, are the
asymptotes of the hyperbola, lines which the curve continually approaches,
but touches only at an infinite distance. If these asymptotes are perpen-
dicular to each other, the hyperbola is called a rectangular or equilateral
hyperbola. It is a property of this hyperbola that if the asymptotes are
taken as axes of a rectangular system of coordinates (see Analytical Geom-
etry), the product of the abscissa and ordinate of any point in the curve is
equal to the product of the abscissa and ordinate of any other point ; or, if
p is the ordinate of any point and v its abscissa, and p\, and vi are the
ordinate and abscissa of any other point, pv = p\v\\ or pv = a constant.
48. The Cycloid (Fig.
60). —If a circle A a be 6 f
rolled along a straight
line A 6, any point of the
circumference as A will
describe a curve, which is
called a cycloid. The
circle is called the gene-
rating circle, and A the
generating point.
To draw a cycloid. —
Divide the circumference
of the generating circle
into an even number of equal parts, as A 1, 12, etc., and set off these dis-
tances on the base. Through the points 1, 2, 3, etc., on the circle
draw horizontal lines, and on them
set off distances la = A 1 , 2b = A 2, 3c =
A3, etc. The points A , a, ft, c, etc.,
will be points in the cycloid, through
which draw the curve.
49. The Epicycloid (Fig. 61) is
generated by a point D in one circle
D C rolling upon the circumference of
another circle A C B, instead of on a
flat surface or line; the former being
the generating circle, and the latter
the fundamental circle. The generat-
ing circle is shown in four positions,
in which the generating point is
successively marked D, D', D", D'".
A D'" B is the epicycloid.
FIG. 61.
50. The Hypocycloid (Fig. 62)
is generated by a point in the gener-
ating circle rolling on the inside of
the fundamental circle.
When the generating circle =
Tadius of the other circle, the hypo-
cycloid becomes a straight line.
51. The Tractrix or Schiele's
anti-friction curve (Fig. 63). — R
is the radius of the shaft, C, 1, 2, etc.,
ihe axis. From O set off on R a
rmall distance, oa; with radius A and
centre a cut the axis at 1, join a 1,
and set off a like small distance a b;
from b with radius R cut axis at 2,
join b 2, and so on, thus finding
points o, a, b, c, d, etc., through which
the curve is to be drawn.
GEOMETRICAL PROBLEMS.
51
52. The Spiral. — The spiral is a curve described by a point which
moves along a straight line according to any given law, the line at the same
time having a uniform angular motion. The line is called the radius vector.
If the radius vector increases directly
as the measuring angle, the spires,
or parts described in each revolution,
thus gradually increasing their dis-
tance from each other, the curve is
known as the spiral of Archimedes
FIG. 64.
his curve is commonly used for
cams. To describe it draw the
radius vector in several different
directions around the centre, with
equal angles between them; set off
the distances 1, 2, 3, 4, etc., corresponding to the scale upon which the
curve is drawn, as shown in Fig. 64.
In the common spiral (Fig. 64) the
pitch is uniform; that is, the spires
are equidistant. Such a spiral is
made by rolling up a belt of uniform
thickness.
To construct a spiral with four
centres (Fig. 65).— Given the
pitch of the spiral, construct a square
about the centre, with the sum of
the four sides equal to the pitch.
Prolong the sides in one direction as
shown; the corners are the centres for
each arc of the external^ angles,
forming a quadrant of a spire.
FIG. 65.
53. To find the diameter of a circle into which a certain number of
rings will fit on its inside (Fig. 66). — For instance, what is the diameter
of a circle into which twelve i/2-inch rings will fit, as per sketch? Assume
that we have found the diameter of the required circle, and have drawn
the rings inside of it. Join the
centres of the rings by straight lines,
as shown: we then obtain a regular
polygon with 12 sides, each side
being equal to the diameter of a
fiven ring. We have now to find
he diameter of a circle circum-
scribed about this polygon, and add
the diameter of one ring to it; the
sum will be the diameter of the circle
into which the rings will fit.
Through the centres A and D of two
adjacent rings draw the radii C A
R\( \^ } __ _,' / }/ and CD; since the polygon has twelve
X-NC^^JT S sides the angle A C D = 30° and
N^^===^K^ AC B = 15°. One half of the side
^^^S^^^ A D is equal to A B. We now give
§7 the following proportion: The sine
FIG. 66. of the angle A C B is to A B as 1 is to
the required radius. From this we
.
_ t the following rule: Divide A B by the sine of the angle A C B\ the
quotient will be the radius of the circumscribed circle; add to the corre-
sponding diameter the diameter of one ring; the sum will be the required
diameter F G.
54. To describe an arc of a circle which is too large to be drawn
by a beam compass, by means of points in the arc, radius being given.
— Suppose the radius is 20 feet and it is desired to obtain five points in an
arc whose half chord is 4 feet. Draw a line equal to the half chord, full
uAvuiais ui> yuiiua i, 2, o, uuu •* icci iiuui me mat pcipciiuicuiai. ciuu
Talues of y in the formula of the circle, x* * j/a » R\ by substituting for
52
GEOMETRICAL PROBLEMS.
x the values 0, 1, 2, 3, and 4, etc., and for R2 the square of the radius, or
400. The values will be y = ^R2 ~ x2 = V400, ^399, V396, V391,
V384; = 20, 19.975, 19.90, 19.774, 19.596.
Subtract the smallest,
or 19.596, leaving 0.404, 0.379, 0.304, 0.178, 0 feet.
Lay off these distances on the five perpendiculars, as ordinates from the
half chord, and the positions of five points on the arc will be found.
Through these the curve may be
drawn. (See also Problem 14.)
55. The Catenary is the curve
assumed by a perfectly flexible cord
when its ends are fastened at two
points, the weight of a unit length
being constant.
The equation of the catenary is
/ x _?\
y=^(ea-}-e a), in which e is the
base of the Napierian system of log-
arithms.
To plot the catenary. — Let o
(Fig. 67) be the origin of coordinates.
Assigning to a any value as 3, the
equation becomes
(
To find the lowest point of the
curve.
Puts = 0; /. y = -
Then put x = \\ .'. f—gl
Put z = 2; .'. 1/=|(
H^ (1.396 +0.717) =3.17.
) = ? (1.948 +0.513) =3.69.
Put x = 3, 4, 5, etc., etc., and find the corresponding values of y. For
each value of y we obtain two symmetrical points, as for example p and, pr.
In this way, by making a successively equal to 2, 3, 4, 5, 6, 7, and 8, the
curves of Fig. 67 were plotted.
In each case the distance from the origin to
the lowest point of the curve is equal to a; for
putting x = o, the general equation reduces to
For values of a — 6, 7, and 8 the catenary
closely approaches the parabola. For deriva-
tion of the equation of the catenary see Bow-
ser's Analytic Mechanics.
56. The Involute is a name given to the
curve which is formed by the end of a string
which is unwound from a cylinder and kept
taut; consequently the string as it is unwound
will always lie in the direction of a tangent
to the cylinder. To describe the involute of
any given circle, Fig. 68, take any point A on
its circumference, draw a diameter A B, and
from B draw B b perpendicular to A B. Make
B b equal in length to half the circumference
of the circle. Divide B b nnd the semi-circum-
ference into the same number of equal parts,
say six. From each point of division 1, 2,
3, etc., on the circumference draw lines to the centre C of the circle.
Then draw lai perpendicular to (71; 2 a^ perpendicular to (72; and
80 on. Make \a\ equal to b 6t; 2 dz equal to b 62; 3 «a equal to b b&; and
so on. Join the points A, alt ctz, 03, etc., by a curve; this curve will be
t&e required involute.
FIG. 68.
GEOMETRICAL PROPOSITIONS. 53
57. Method of plotting angles without using a protractor. — The
radius of a circle whose circumference is 360 is 57.3 (more accurately
57.296). Striking a semicircle with a radius 57.3 by any scale, spacers
set to 10 by the same scale will divide the arc into 18 spaces of 10° each
and intermediates can bo measured indirectly at the rate of 1 by scale for
each 1°, or interpolated by eye according to the degree of accuracy required
The following table shows the chords to the above-mentioned radius, for
every 10 degrees from 0° up to 110°. By means of one of these a 10°
point is fixed upon the paper next less than the required angle, and the
remainder is laid oft at the rate of 1 by scale for each degree.
Angle. Chord. Angle. Chord. Angle. Chord.
1° 0.999 40° 39.192 80° 73658
10° 9.988 50° 48.429 90°.., 81029
20° 19.899 60° 57.296 100° '. 87>82
30° 29.658 70° 65.727 110° 93.869
GEOMETRICAL PROPOSITIONS.
In a right-angled triangle the square on the hypothenuse is equal to the
sum of the squares on the other two sides.
If a triangle is equilateral, it is equiangular, and vice versa.
If a straight line from the vertex of an isosceles triangle bisects the base,
It bisects the vertical angle and is perpendicular to the base.
If one side of a triangle is produced, the exterior angle is equal to the
sum of the two interior and opposite angles.
If two triangles are mutually equiangular, they are similar and their
corresponding sides are proportional.
If the sides of a polygon are produced in the same order, the sum of the
exterior angles equals four right angles. (Not true if the polygon has
re-entering angles.)
In a quadrilateral, the sum of the interior angles equals four right
angles.
In a parallelogram, the opposite sides are equal; the opposite angles are
equal; it is bisected by its diagonal, and its diagonals bisect each other.
If three points are not in the same straight line, a circle may be passed
through them.
If two arcs are intercepted on the same circle, they are proportional to
the corresponding angles at the centre.
If two arcs are similar, they are proportional to their radii.
The areas of two circles are proportional to the squares of their radii.
If a radius is perpendicular to a chord, it bisects the chord and it bisects
the arc subtended by the chord.
A straight line tangent to a circle meets it in only one point, and it 13
perpendicular to the radius drawn to that point.
If from a point without a circle tangents are drawn to touch the circle,
there are but two; they are equal, and they make equal angles with the
chord joining the tangent points.
If two lines are parallel chords or a tangent ,and parallel chord, they
intercept equal arcs of a circle.
If an angle at the circumference of a circle, between two chords, is sub-
tended by the same arc as an angle at the centre, between two radii, tho
angle at the circumference is equal to half the angle at the centre.
If a triangle is inscribed in a semicircle, it is right-angled.
If two chords intersect each other in a circle, the rectangle of the seg-
ments of the one equals the rectangle of the segments of the other.
And if one chord is a diameter and the other perpendicular to it, the
rectangle of the segments of the diameter is equal to the square on
half the other chord, and the half chord is a mean proportional between
the segments of the diameter.
If an angle is formed by a tangent and chord, it is measured by one half
of the arc intercepted by the chord; that is, it is equal to half the angle at
the centre subtended by the chord.
54 MENSURATION — PLANE SURFACES.
a Railway Curve. — This last proposition is useful in staking
out railway curves. A curve is designated as one of so many degrees, and
the degree is the angle at the centre subtended by a chord of 100 ft. To
lay out a curve of n degrees the transit is set at its beginning or " point of
curve," pointed in the direction of the tangent, and turned through i/2?i
degrees; a point 100 ft. distant in the line of sight will be a point in the
curve. The transit is then swung 1/2 n degrees further and a 100 ft. chord
is measured from the point already found t9 a point in the new line of
sight, which is a second point or " station " in the curve.
The radius of a 1° curve is 5729.65 ft., and the radius of a curve of any
degree is 5729.65 ft. divided by the number of degrees.
Some authors use the angle subtended by an arc (instead of chord) of
100 ft. in defining the degree of a curve. For a statement of the relative
advantages of the two definitions, see Eng. News, Feb. 16, 1911.
MENSURATION.
PLANE SURFACES.
Quadrilateral* — A four-sided figure.
Parallelogram. — A quadrilateral with opposite sides parallel.
Varieties. — Square: four sides equal, all angles right angles. Rect-
angle: opposite sides equal, all angles right angles. Rhombus: four sides
equal, opposite angles equal, angles not right angles. Rhomboid: opposite
sides equal, opposite angles equal, angles not right angles.
Trapezium. — A quadrilateral with unequal sides.
Trapezoid. — A quadrilateral with only one pair of opposite sides
parallel. _
Diagonal of a square = ^2 X side2 = 1.4142 X side. _
Diag. of a rectangle = v sum of squares of two adjacent sides.
Area of any parallelogram = base X altitude.
Area of rhombus or rhomboid = product of two adjacent sides X sine
of angle included between them.
Area of a trapezoid = product of half the sum of the two parallel sidea
by the perpendicular distance between them.
To find the area of any quadrilateral figure. — Divide the quad-
rilateral into two triangles; the sum of the areas of the triangles is the
area.
Or, multiply half the product of the two diagonals by the sine of the
angle at their intersection.
To find the area of a quadrilateral which may be inscribed in a
circle. — From half the sum of the four sides subtract each side severally;
multiply the four remainders together; the square root of the product is
the area.
Triangle. — A three-sided plane figure.
Varieties. — Right-angled, having one right angle; obtuse-angled, hav-
ing one obtuse angle; isosceles, having two equal angles and two equal
sides; equilateral, having three equal sides and equal angles.
The sum of the three angles of every triangle = 180°.
The sum of the two acute angles of a right-angled triangle = 90°.
Hypothenuse of a right-angled triangle, the side opposite the right
angle, = Vsum of the squares of the other two sides. If a and 6 are the
two sides and c the hypothenuse, c2=a2 + &2; a = Vc2-&2=V(c+&)(/-&).
If the two sides are equal, side = hyp -9- 1.4142; or hyp X.7071.
To find the area of a triangle :
RULE 1. Multiply the base by half the altitude.
RULE 2. Multiply half the product of two sides by the sine of the
included angle.
RULE 3. From half the sum of the three sides subtract each side
severally; multiply together the half sum and the three remainders, and
extract the square root of the product.
The area of an equilateral triangle is equal to one fourth _the square of
one of its sides multiplied by the square root of 3, =» a . , a being tht
tide; or a8 X 0,433013,
MENSURATION.
55
Area of a triangle given, to find base: Base = twice area •*• perpendicular
height.
Area of a triangle given, to find height: Height = twice area -s- base.
Two sides and base given, to find perpendicular height (in a triangle in
which both of the angles at the base are acute).
RULE. — As the base is to the sum of the sides, so is the difference of the
sides to the difference of the divisions of the base made bv drawing the
perpendicular. Half this difference being added to or subtracted from
half the base will give the two divisions there9f. As each side and its
opposite division of the base constitutes a right-angled triangle., the
perpendicular is ascertained by the rule: Perpendicular = Vhyp2 — base2*
Areas of similar figures are to each other as the squares of their
respective linear dimensions. If the area of an equilateral triangle of
side = 1 is 0.433013 and its height 0.86603, what is the area of a similai
triangle whose height = 1? 0.866032 : I2 :: 0.433013 : 0.57735, Ans.
Polygon. — A plane figure having three or more sides. Regular or
irregular, according as the sides or angles are equal or unequal. Polygons
are named from the number of their sides and angles.
To find the area of an irregular polygon. — Draw diagonals dividing
the polygon into triangles, and find the sum of the areas of these triangles.
To find the area of a regular polygon:
RULE. — Multiply the length of a side by the perpendicular distance to
the centre; multiply the product by the number of sides, and divide it by
2. Or, multiply half the perimeter by the perpendicular let fall from the
centre on one of the sides.
The perpendicular from the centre is equal to half of one of the sides of
the polygon multiplied by the cotangent of the angle subtended by the
half side.
The angle at the centre = 360° divided by the number of sides.
Table of Regular Polygons^
«H
Radius of Cir-
II
cumscribed
12 •
c3 o
t
d
ft
Circle.
^Q1"1
^ d
2
1
1
iH
£
~
K3
t
1.1
2 ®
C-TJ
si
i;'
1
"d
6
S $
m
1-
w
*o
02
J
i— i II
i"1
°«
S^^j
"S
0)^9
^ a
o
g
OQ
o£
II
11
"S'S 2
o
^ S
&
i
1
1
• £
1
J'3
1
r
3
Triangle
0.4330
0.5773
2.000
0.5773
0.2887
1.732
120°
60°
4
Square
1.0000
1.0000
.414
0.7071
0.5000
1.4142
90
90
5
Pentagon
1 . 7205
0.7265
.236
0.8506
0.6882
1 . 1 756
72
108
6
Hexagon
2.5981
0.8660
.155
1 . 0000
0.866
1 . 0000
60
120
7
Heptagon
3.6339
0.7572
.11
1 . 1 524
1 . 0383
0.8677
51 26'
1284-7
8
Octagon
4.8284
0.8284
.082
1 . 3066
.2071
0.7653
45
135
9
Nonagon
6.1818
0.7688
.064
1 4619
.3737
0.684
40
140
10
11
Decagon
Undecagon
7.6942
9.3656
0.8123
0.7744
.051
.042
1.618
1 . 7747
.5388
.7028
0.618
0.5634
36
3243'
144
1473-11
12
Dodecagon
11.1962
0.8038
.035
1.9319
.866
0.5176
30
150
* Short diameter, even number of sides, = diam. of inscribed circle:
short diam., odd number of sides, = rad. of inscribed circle + rad. ol
circumscribed circle.
56
AREA OF IRREGULAR FIGURES.
To find the area of a regular polygon, when the length of a side
only is given:
RULE.— Multiply the square of the side by the figure for "area, side —
1," opposite to the name of the polygon in the table.
Length of a side of a regular polygon inscribed in a circle = diam.
X sin (180° •*- no. of sides).
No. of sides sin (180° /n) No. sin (180° /n)
0.86603
.70711
.58778
.50000
.43388
.38268
9 0.34202
10 .30902
11 .28173
12 .25882
13 .23931
14 .22252
No. sin (180°/n)
15 0.20791
16 .19509
17 .18375
18 .17365
19 .16458
20 .15643
To find the area of an irregular
i^gure (Fig. 69). — Draw ordinates
f, cross its breadth at equal distances
apart, the first and the last ordinate
each being one half space from the
ends of the figure. Find the average
breadth by adding together the
lengths of these lines included be-
tween the boundaries of the figure,
and divide by the number of the lines
added; multiply this mean breadth
by the length. The greater the num-
ber of lines the nearer the approxi-
mation.
\l* 3 4 $
£
FIG. 69.
In a figure of very irregular outline, as an indicator-diagram from a
high-speed steam-engine, mean lines may be substituted for the actual
lines of the figure, being so traced as to intersect the undulations, so that
the total area of the spaces cut off may be compensated by that of the
extra spaces inclosed.
2d Method: THE TRAPEZOIDAL RULE. — Divide the figure into any
sufficient number of equal parts; add half the sum of the two end ordinates
to the sum of all the other ordinates; divide by the number of spaces
(that is, one less than the number of ordinates) to obtain the mean
ordinate, and multiply this by the length to obtain the area.
3d Method: SIMPSON'S RULE. — Divide the length of the figure into any
even number of equal parts, at the common distance D apart, and draw
ordinates through the points of division to touch the boundary lines
Add together the first and last ordinates and call the sum A ; add together
the even ordinates and call the sum J5; add together the odd ordinates,
except the first and last, and call the sum C. Then,
area of the figure =
A+4B+2C
XD.
4/fe Method: DURAND'S RULE. — Add together */io the sum of the first
and last ordinates, 1 Vio the sum of the second and the next to the last
(or the penultimates), and the sum of all the intermediate ordinates.
Multiply the sum thus gained by the common distance between the ordi-
nates to obtain the area, or divide this sum by the number of spaces to
f btain the mean ordinate.
Prof. Durand describes the method of obtaining his rule in Engineering
News, Jan. 18, 1894. He claims that it is more accurate than Simpson's
rule, and practically as simple as the trapezoidal rule. He thus describes
its application for approximate integration of differential equations. Any
definite integral may be represented graphically by an area. Thus, let
Q = fu dx
be an integral in which u is some function of x, either known or admitting
of computation or measurement. Any curve plotted with x as abscissa
and u as ordinate will then represent the variation of u with x, and tht
MENSURATION.
57
area between such curve and the axis X will represent the integral in
question, no matter how simple or complex may be the real nature of the
function u.
Substituting in the rule as above given the word " volume" for " area"
and the W9rd "section" for " ordinate," it becomes applicable to the
determination of volumes from equidistant sections as well as of areas
from equidistant ordinates.
Having approximately obtained an area by the trapezoidal rule, the
area by Durand's rule may be found by adding algebraically to the sum of
the ordinates used in the trapezoidal rule (that is, half the sum of the end
ordinates -f sum of the other ordinates) 1/10 of (sum of penultimates
— sum of first and last) and multiplying by the common distance between
the ordinates.
5ih Method. — Draw the figure on cross-section paper. Count the
number of squares that are entirely included within the boundary; then
estimate the fractional parts of. squares that are cut by the boundary, add
together these fractions, and add the sum to the number of whole squares.
The result is the area in units of the dimensions of the squares. The finer
the ruling of the cross-section paper the more accurate the result.
6th Method. — Use a planimeter.
7th Method. — With a chemical balance, sensitive to one milligram,
draw the figure on paper of uniform thickness and cut it out carefully;
weigh the piece cut out, and compare its weight with the weight per
square inch of the paper as tested by weighing a piece of rectangular shape.
THE CIRCLE.
Circumference = diameter X 3. 1416, nearly; more accurately, 3.14159265359.
99 "^^^
Approximations, = 3.143; = 3.1415929.
The ratio of circum. to diam. is represented by the symbol
Area = 0.7854 X square of the diameter.
(called Pi).
Multiples of »r.
1* = 3.14159265359
In = 6.28318530718
37r = 9.42477796077
4* = 12.56637061436
5x = 15.70796326795
6^ = 18.84955592154
In = 21.99114857513
8;: = 25.13274122872
9* = 28.27433388231
7T/4
Multiples of|-
= 0.7853982
X 2 = 1.5707963
X 3 = 2.356194r
X 4 = 3.1415927
X 5 = 3.9269908
X 6 = 4.7123890
X 7 = 5.4977871
X 8 = 6.2831853
X 9 = 7.0685835
Ratio of diam. to circumference = reciprocal of « = 0.3183099.
1/7^=0.101321
VK= 1.772453
V7/7 =0.564189
vV/4 =0.886226
LogTr =0.497 14987
Log ir/4_= 1.895090
Log vV =0.248575
Log vV/4= 1.947545
iprocal of »/4 = 1.27324.
10/7r= 3.18310
Multiples of I/TT.
12/x= 3.81972
I/TT = 0.31831
x/2 = 1.570796
2/7T = 0.63662
7T/3 = 1.047197
3/?r = 0.95493
7T/6 = 0.523599
4/7r= 1.27324
7T/12 = 0.261799
5/7T = 1.59155
ir/64 = 0.049087
6/7r= 1.90986
Tr/360 = 0.0087266
7/7r= 2.22817
360/7r= 114.5915
8/7T = 2.54648
*•* = 9.86960
9/7T = 2.86479
1-^-4*-= 0.0795775
Diam. in ins. = 13.5405 Varea in sq. ft.
Area in sq. ft. = (diam in inches)2 X .0054542.
D = diameter, R = radius, C = circumference,
; area.
58
THE CIRCLE.
. = ; = .0795802 ;= -
R = •-
0.31831(7;
0.159155C;
; = 2 4/-; = 1.
V *
12838
~ ; = 0.564189
Areas of circles are to each other as the squares of their diameters.
To find the length of an arc of a circle:
RULE 1. As 360 is to the number of degrees in the arc, so is the circum-
ference of the circle to the length of the arc.
RULE 2. Multiply the diameter of the circle by the number of degrees
in the arc, and this product by 0.0087266.
Relations of Arc, Chord, Chord of Half the Arc, etc.
Let R = radius, D = diameter, L = length of arc,
C = chord of the arc, c = chord of half the arc,
V = rise, or height of the arc,
9/> V 1 0 F
Length of the arc = L
- (very nearly), =
+ 2c' nearly»
4F2X
15CS+33FS
Chord of the arc C, = 2 >/c2 - F2; =
.. nearly.
- (D - 2F)2; = 8c - 3L
= 2 \/(D - F) X F.
Chord of half the arc, c = i/2 v/<72+ 4F2; = VD x F; = (3L -f C) •*• 8.
Diameter of the circle, D = ;= V4 C24- F^;
Rise of the arc, F = ^ ; = 1/2 (D - '
(or if F is greater than radius 1/2 (I> + '
- <72) ;
Half the chord of the arc is a mean proportional between the rise and
the diameter minus the rise: 1/2 C = V'F X ( £ - F).
Length of the Chord subtending an angle at the centre = twice the
sine of half the angle. (See Table of Sines.)
Ordinates to Circular Arcs. — C = chord, F = height of the arc, or
middle ordinate, x = abscissa, or distance measured on the chord from its
central point, y = ordinate, or distance from the arc to the chord at the
point x, V = R - ^R2 - 1/4C'2; y = ^R2 - x2 - (R - F).
Length of a Circular Arc. — Huyghens's Approximation.
Length of the arc, L = (8c — C) •*• 3. Professor Williamson shows
that when the arc subtends an angle of 30°, the radius being 100,000 feet
(nearly 19 miles), the error by this formula is about two inches, or 1/600000
part of the radius. When the length of the arc is equal to the radius, i.e.,
when it subtends an angle of 57°. 3, the error is less than 1/7680 part of the
radius. Therefore, if the radius is 100,000 feet, the error is less than
100000/7680 = 13 feet. The error increases rapidly with the increase of
the angle subtended. For an arc of 120° the error is 1 part in 400; for an
arc of 180° the error is 1.18%,
MENSURATION.
59
In the measurement of an arc which is described with a short radius the
error is so small that it may be neglected. Describing an arc with a radius
of 12 inches subtending an angle of 30°, the error is 1/50000 of an inch.
To measure an arc when it subtends a large angle, bisect it and measure
each half as before — in this case making B =• length of the chord of half the
arc, and b = length of the chord of one fourth the arc; then L = (166 - 25) -*- 3.
Formulas for a Circular Curve.
J. C. Locke, Eng. News, March 16, 1908.
c
u
;- = ^2R (R- V(R +&)(#_ 6)
= 2\Sm (2R — m), = 2R sin 1/27,
= 2 17 cos 1/2 7.
e = R exsec 1/27, =» R tan l/27 tan 1/47,
= T tan 1/4 7.
7i)sin7l = a cot 1/2 7.
2a
2m '
- c) (2R - c)), = 2R sin 1/47.
Y = R vers i/27,
JK sin 1/2 / tan 1/4 /, = 1/2 c tan 1/4 /.
-£if
+6) (fi -
(sin 1/2 7)2, = R vers 7,
R sin 7 tan 1/27, = & tan 1/27, =•• T sin 7.
= #tani/27. r L^
I = ±L x 57.295780°.
I — c
= IR X 0.01745329,
Area of Segment = — -- •
2 sin 7
X 57.295780°.
1Z&
2 *
Relation of the Circle to its Equal, Inscribed, and Circum-
scribed Squares.
Diameter of circle X
Circumference of circle X
Circumference of circle X
Diameter of circle X
Circumference of circle X
Area of circle X 0.90031 -f-
Area of circle X
Area of circle X
Side of square X
X
" X
X
Perimeter of square X
Square inches X
0.88623 )
0.28209 J
1.1284
0.7071 )
0.22508} =
liameter)
diameter
1.2732
0.63662
1.4142
4.4428
1.1284
3.5449
0.88623
1.2.732
side of equal square,
perimeter of equal square.
side of inscribed square.
= area of circumscribed square.
= area of inscribed square.
= diam. of circumscribed circle.
= circum.
=» diam. of equal circle.
«= circum. ^ ^
= circular inches.
GO MENSURATION.
Sectors and Segments. — To find the area of a sector of a circle.
RULE 1. Multiply the arc of the sector by half its radius.
RULE 2. As 360 is to the number of degrees in the arc, so is the area of
the circle to the area of the sector.
RULE 3. Multiply the number of degrees in the arc by the square of the
radius and by 0.008727.
To find the area of a segment of a circle: Find the area of the sector
which has the same arc, and also the area of the triangle formed by the
chord of the segment and the radii of the sector.
Then take the sum of these areas, if the segment is greater than a semi-
circle, but take their difference if it is less. (See Table of Segments.)
Another Method: Ar^a of segment = V2.R2 (arc — sin A), in which A is
the central angle, R the radius, and arc the length of arc to radius 1 .
To find the area of a segment of a circle when its chord and height only
are given. First find radius, as follows:
radius - 1 [sq^e °f™^ ChOrd + height ] .
2. Find the angle subtended by the arc, as follows: half chord •*•
radius = sine of half the angle. Take the corresponding angle from a
table of sines, and double it to get the angle of the arc.
3. Find area of the sector of which the segment is a part:
area of sector = area of circle X degrees of arc -*• 360.
4. Subtract area of triangle under the segment:
Area of triangle = half chord X (radius — height of segment). .
The remainder is the area of the segment.
When the chord, arc, and diameter are given, to find the area. From
the length of the arc subtract the length of the chord. Multiply the
remainder by the radius or one-half diameter; to the product add the
chord multiplied by the height, and divide the sum by 2.
Given diameter, d,'and height of segment, h.
When h is from 0 to 1/4 c?, area = feVl.766(/fe - fe2;
1/2 d, area = h\/Q.Ol7d2 + \.ldh - h2
(approx.). Greatest error 0.23%, when h = i/4rf.
To find the chord: From the diameter subtract the height; multiply
the remainder by four times the height and extract the square root.
When the chords of the arc and of half the arc and the rise are given:
To the chord of the arc add four thirds of the chord of half the arc; mul-
tiply the sum by the rise and the product by 0.40426 (approximate).
Circular Ring. — To find the area of a ring included between the cir-
cumferences of two concentric circles: Take the difference between the. areas
of the two circles; or, subtract the square of the less radius from the square
of the greater, and multiply their difference by 3.14159.
The area of the greater circle is equal to nR*;
and the area of the smaller, ~r2.
Their difference, or the area of the ring, is n(R* - r2).
The Ellipse. — Area of an ellipse = product of its semi-axes X3.14159
= product of its axes X 0.785398.
The Ellipse. — Circumference (approximate) = 3.1416 y - - — , D
and d being the two axes.
Trautwine gives the following as more accurate: When the longer axis
D is not more than five times the length of the shorter axis, dt
Circumference - 3.1416
MENSURATION. 61
"When D is more than 5d, the divisor 8.8 is to be replaced by the fallowings
ForD/d = 6 789 10 12 14 16 18 20 30 40 50
Divisor = 9 9.2 9.3 9.35 9.4 9.5 9.6 9.68 9.75 9.8 9.92 9.98 10
in which A = - — Ingenieurs Taschenbuch, 1896. (a and 6, semi-axes.)
Carl G. Earth (Machinery, Sept., 1900) gives as a very close approxi-
mation to this formula
Area of a segment, of an ellipse the base of which is parallel to one of
the axes of the ellipse. Divide the height of the segment by the axis of
which it is part, and find the area of a circular segment, in a table 9f circu-
lar segments, of which the height is equal to the quotient; multiply the
area thus found by the product of the two axes of the ellipse.
Cycloid. — A curve generated by the rolling of a circle on a plane.
Length of a cycloidal curve = 4 X diameter of the generating circle.
Length of the base = circumference of the generating circle.
Area of a cycloid = 3 X area of generating circle.
Helix (Screw). — A line generated by the progressive rotation cf a
point around an axis and equidistant from its center.
Length of a helix. — To the square of the circumference described by the
generating point add the square of the distance advanced in one revolution,
and take the square root of their sum multiplied by the number of revolu-
tions of the generating point. Or,
« length, n being number of revolutions.
Spirals. — Lines generated by the progressive rotation of a point
around a fixed axis, with a constantly increasing distance from the axis.
A plane spiral is made when the point rotates in one plane.
A conical spiral is made when the point rotates around an axis at a
progressing distance from its center, and advancing in the direction of the
axis, as around a cone.
Length of a plane spiral line. — When the distance between the coils is
uniform.
RULE. — Add together the greater and less diameters; divide their sum
by 2; multiply the quotient by 3.1416, and again by the number of revo-
lutions. Or, take the mean of the length of the greater and less circum-
ferences and multiply it by the number of revolutions. Or,
length = im(R +r), R and r being the outer and inner radii. To find n,
let t = thickness of coil or band, s = space between the coils, n = . . — ••
i ~r s
Length of a conical spiral line. — Add together the greater and less
diameters; divide their sum by 2 and multiply the quotient by 3.1416.
To the square of the product of this circumference and the number of
revolutions of the spiral add the square of the height of its axis and take
the square root of the sum.
Or, length
SOLID BODIES.
Surfaces and Volumes of Similar Solids. — The surfaces of two
similar solids are to each other as the squares of their linear dimensions;
the volumes are as the cubes of their linear dimensions. If L = the side
62 MENSURATION.
of a cube or other solid, and / the side of a similar body of different size,
S, s, the surfaces and V, v, the volumes respectively, S : s :: L2 : /*;
V : v :: L3 : J«.
The Prism. — To find the surface of a right prism: Multiply the perim-
eter of the base by the altitude for the convex surface. To this add the
areas of the two ends when the entire surface is required.
Volume of a prism = area of its base X its altitude.
The pyramid. — Convex surface of a regular pyramid = perimeter of
its base X half the slant height. To this add area of the base if the whole
surface is required.
Volume of a pyramid = area of base X one third of the altitude.
To find the surface of a frustum of a regular pyramid: Multiply half the
slant height by the sum of the perimeters of the' two bases for the convex
surface. To this add the areas of the two bases when the entire surface is
required .
To find the volume of a frustum of a pyramid: Add together the areas of
the two bases and a mean proportional between them," and multiply the
sum by one third of the altitude. (Mean proportional between two
numbers = square root of their product.)
Wedge. — A wedge is a solid bounded by five planes, viz.: a rectangular
base, two trapezoids, or two rectangles, meeting in an edge, and two
triangular ends. The altitude is the perpendicular drawn from any point
in the edge to the plane of the base.
To find the volume of a wedge: Add the length of the edge to twice the
length of the base, and multiply the sum by one sixth of the product of
the height of the wedge and the breadth of the base.
Rectangular prismoid. — A rectangular prisrnoid is a solid bounded
by six planes, of which the two bases are rectangles, having their corre-
sponding sides parallel, and the four upright sides of the solid are trape-
zoids.
To find the volume of a rectangular prismoid: Add together the areas of
the two bases and four times the area of a parallel section equally distant
from the bases, and multiply the sum by one sixth of the altitude.
Cylinder. — Convex surface of a cylinder = perimeter of base X
altitude. To this add the areas of the two ends when the entire surface is
required.
Volume of a cylinder — area of base X altitude.
Cone. — Convex surface of a cone = circumference of base X half the
slant height. To this add the area of the base when the entire surface is
required.
Volume of a cone = area of base X one third of the altitude.
To find the surface of a frustum of a cone: Multiply half the side by the
sum of the circumferences of the two bases for the convex surface; to this
add the areas of the two bases when the entire surface is required.
To find the volume of a frustu?n of a cone: Add together the areas of
the two bases and a mean proDortional between them, and multiply
the sum by one third of the altitude. Or, Vol. = 0.261Sa(624- c2 + be);
a = altitude; b and c, diams. of the two bases.
Sphere. — To find the surface of a sphere: Multiply the diameter by the
circumference of a great circle; or, multiply the square of the diameter by
3.14159.
Surface of sphere — 4 x area of its great circle.
*' *' ** =i convex surface of its circumscribing cylinder.
Surfaces of spheres are to each other as the squares of their diameters.
To find the volume of a sphere: Multiply the surface by one third of the
radius; or, multiply the cube of the diameter by ;r/6; that is, by 0.5236,
Value of 7T/6 to' 10 decimal places = 0.5235987756.
The volume of a sphere = 2/3 the volume of its circumscribing cylinder.
Volumes of spheres are to each other as the cubes of their diameters.
MENSURATION. 63
Spherical triangle. — To find the area of a spherical triangle: Compute
the surface of the quadrantal triangle, or one eighth of the surface of
the sphere. From the sum of the three angles subtract two right angles;
divide the remainder by 90, and multiply the quotient by the area of the
quadrantal triangle.
Spherical polygon. — To find the area of-a spherical polygon: Compute
the surface of the quadrantal triangle. From the sum of all the angles
subtract the product of two right angles by the number of sides less two;
divide the remainder by 90 and multiply the quotient by the area of the
quadrantal triangle.
The prismoid. — The prismoid is a solid having parallel end areas, and
may be composed of any combination of prisms, cylinders, wedges, pyra-
mids, or cones or frustums of the same, whose bases and apices lie in the
end areas.
Inasmuch as cylinders and cones are but special forms of prisms and
pyramids, and warped, surface solids may be divided into elementary
forms of them, and since frustums may also be subdivided into the elemen-
tary forms, it is sufficient to say that all prismoids may be decomposed
into prisms, wedges, and pyramids. If a formula can be found which is
equally applicable to all of these forms, then it will apply to any combi-
nation of them. {Such a formula is called
The Prismoictal Formula.
Let A = area of the base of a prism,, wedge, or pyramid:
Ai, Azt Am = the two end and the middle areas of a prismoid, or of any ol
its elementary solids; h = altitude of the prismoid or elementary solid?
V = its volume;
For a prism, Ai, Am and A* are equal, = A; V = ^ X SA = hA.
Fora wedge with parallel ends, 42 = 0, Am=-- \ Xi;V=|(4i+2A:)=- — •
For a cone or pyramid, Az = 0, Am = - AI; V = - (A\ + A\) = -^--
The prismoidal formula is a rigid formula for all prismoids. The only
approximation involved in its use is in the assumption that the given solid
may be generated by a right line moving over the boundaries of the end
areas.
The area of the middle section is never the mean of the two end areas if
the prismoid contains any pyramids or cones among its elementary forms.
When the three sections are similar in form the dimensions of the middle
area are always the means of the corresponding end dimensions. This
fact often enables the dimensions, and hence the area of the middle section,
to be computed from the end areas.
Polyedrons. — A polyedron is a solid bounded by plane polygons. A
regular polyedron is one whose sides are all equal regular polygons.
To find the surface of a regular polyedron. — Multiply the area of one of
the faces by the number of faces; 9r, multiply the square of one of the
edges by the surface of a similar solid whose edge is unity.
A TABLE OP THE' REGULAR POLYEDRONS WHOSE EDGES ARE UNITY.
Names. No*, of Faces. Surface. Volume.
Tetraedron 4 1.7320508 0.1178513
Hexaedron 6 6.0000000 1.0000000
Octaedron 8 3.4641016 0.4714045
Dodecaedron 12 20.6457288 7.6631189
Icosaedroa 20 8.6602540 2.1816950
g4 MENSURATION.
To find the volume of a regular polyedron. — Multiply the surface
by one third of the perpendicular let fall from the centre on one of the
faces; or, multiply the cube of one of the edges by the solidity of a similar
polyedron whose edge is unity.
Solid of revolution. — The volume of any solid of revolution is equal
to the product of the area of its generating surface by the length of the
path of the centre of gravity of that surface.
The convex surface of any solid of revolution is equal to the product of
the perimeter of its generating surface by the length of path of its centre
of gravity.
Cylindrical ring. — Let d = outer diameter; d' = inner diameter;
1/2 (d - d') = thickness = t; 1/4* I2 = sectional area; 1/2 (d +d') = mean
diameter = M; m = circumference of section; IT M = mean circum-
ference of ring; surface = n t X n M; = 1/4 ^ (d2 - d/2); = 9.86965 t M ;
= 2.46741 (d2 - d/2); volume = 1/4 * tz M n\ = 2.467241 .2 M.
Spherical zone. — Surface of a spherical zone, or segment of a sphere
= its altitude X the circumference of a great circle of the sphere. A
great circle is one v/hose plane passes through the centre of the sphere.
Volume of a zone of a sphere. — To the sum of the squares of the radii
of the ends add one third of the square of the height; multiply the sum
by the height and by 1.5708.
Spherical segment. — Volume of a spherical segment with one base. —
Multiply half the height of the segment by the area of the base, and the
cube of the height by 0.5236 and add the two products. Or, from three
times the diameter of the sphere subtract twice the height of the segment;
multiply the difference by the square of the height and by 0.5236. Or, to
three times the square of the radius of the base of the segment add the
square of its height, and multiply the sum by the height and by 0.5236.
Spheroid or ellipsoid. — When the revolution of the generating sur-
face of the spheroid is about the transverse diameter the spheroid is
prolate, and when about the conjugate it is oblate.
Convex surface of a segment of a spheroid. — Square the diameters of the
spheroid, and take the square root of half their sum; then, as the diameter
from which the segment is cut is to this root so is the height of the segment
to the proportionate height of the segment to the mean diameter. Multiply
the product of the other diameter and 3. 1416 by the proportionate height.
Convex surface of a frustum or zone of a spheroid. — Proceed as by
previous rule for the surface of a segment, and obtain the proportionate
height of the frustum. Multiply the product of the diameter parallel to
the base of the frustum and 3.1416 by the proportionate height of the
frustum.
Volume of a spheroid is equal to the product of the square of the revol v-
ing axis by the fixed axis and by 0.5236. The volume of a spheroid is two
thirds of that of the circumscribing cylinder.
Volume of a segment of a spheroid. — 1. When the base is parallel to the
revolving axis, multiply the difference between three times the fixed axis
and twice the height of the segment, by the square of the height and by
0.5236. Multiply the product by the square of the revolving axis, and
divide by the square of the fixed axis.
2. When the base is perpendicular to the revolving axis, multiply the
difference between three times the revolving axis and twice the height of
the segment by the square of the height and by 0.5236. Multiply the
product by the length of the fixed axis, and divide by the length of the
revolving axis.
Volume of the middle frustum of a spheroid. — 1. When the ends are
circular, or parallel to the revolving axis: To twice the square of the middle
diameter add the square of the diameter of one end; multiply the sum by
the length of the frustum and by 0.2618.
2. When the ends are elliptical, or perpendicular to the revolving axis:
To twice the product of the transverse and conjugate diameters of the
middle section add the product of the transverse and conjugate diameters
of one end; multiply the sum by the length of the frustum and by 0.2618.
Spindles. — Figures generated by the revolution of a plane area,
bounded by a ctirve other than a circle, when th j curve is revolved about
a chord perpendicular to its axis, or about its double ordinate. They are
designated by the name of the arc or curve from which they are generated,
as Circular, Elliptic, Parabolic, etc., etc.
MENSURATION. 65
Convex surface of a circular spindle, zone, or segment of it. — Rule: Mul-
tiply the length by the radius of the revolving arc; multiply this arc by the
central distance, or distance between the centre of the spindle and centre
of the revolving arc; subtract this product from the former, double the
remainder, and multiply it by 3.1416.
Volume of a circular spindle. — Multiply the central distance by half
the area of the revolving segment; subtract the product from one third of
the cube of half the length, and multiply the remainder by 12.5664.
Volume of fruslum or zone of a circular spindle. — From the square of
half the length of the whole spindle take one third of the square of half the
length of the frustum, and multiply the remainder by the said half length
of the frustum; multiply the central distance by the revolving area which
generates the frustum; subtract this product from the former, and multi-
ply the remainder by 6.2832.
Volume of a segment of a circular spindle. — Subtract the length of the
segment from the half length of the spindle; double the remainder and
ascertain the volume of a middle frustum of this length; subtract the
result from the volume of the whole spindle and halve the remainder.
this product by 8.
Parabolic conoid. — Volume of a parabolic conoid (generated by the
revolution of a parabola on its axis). — Multiply the area of the base by
half the height.
Or multiply the square of the diameter of the base by the height and by
Volume of a fruslum of a parabolic conoid. — Multiply half the sum of
xne areas of the two ends by the height.
Volume of a -parabolic spindle (generated by the revolution of a parabola
on its base). — Multiply the square of the middle diameter by the length
and by 0.4189. The volume of a parabolic spindle is to that of a cylinder
of the same height and diameter as 8 to 15.
Volume of the middle frustum of a parabolic spindle. — Add together
8 times the square of the maximum diameter, 3 times the square of the
end diameter, and 4 times the product of the diameters. Multiply the
sum by the length of the frustum and by 0.05236. This rule is applicable
for calculating the content of casks of parabolic form.
Casks. — To find the volume of a cask of any form. — Add together 39
times the square of the bung diameter, 25 times the square of the head
diameter, and 26 times the product of the diameters. Multiply the sum
by the length, and divide by 31,773 for the content in Imperial gallons, or
by 26,470 for U. S. gallons.
This rule was framed by Dr. Hutton, on the supposition that the middle
third of the length of the cask was a frustum of a parabolic spindle, and
each outer third was a frustum of a cone.
To find the ullage of a cask, the quantity of liquor in it when it is not full.
1. For a lying cask: Divide the number of wet or dry inches by the bung
diameter in inches. If the quotient is less than 0.5, deduct from it one
fourth part of what it wants of 0.5. If it exceeds 0.5, add to it one fourth
part of the excess above 0.5. Multiply the remainder or the sum by the
whole content of the cask. The product is the quantity of liquor in the
cask, in gallons, when the dividend is wet inches; or the empty space, if
dry inches.
2. For a standing cask: Divide the number of wet or dry inches by the
length of the cask. If the quotient exceeds 0.5, add to it one tenth of its
excess above 0.5; if less than 0.5, subtract from it one tenth of what it
wants of 0.5. Multiply the sum or the remainder by the whole content of
the cask. The product is the quantity of liquor in the cask, when the
dividend is wet inches; or the empty space, if dry inches.
Volume of cask (approximate) U. S. gallons = square of mean diam.
X length in inches X 0.0034. Mean diameter = half the sum of the
bung and head diameters.
Volume of an irregular solid. — Suppose it divided into parts, resem-
bling prisms or other bodies measurable by preceding rules. Find the con-
lent of each part; the sum of the contents is the cubic contents of the solid.
66 PLANE TRIGONOMETRY.
The content of a small part is found nearly by multiplying half the sum
of the areas of each end by the perpendicular distance between them.
The contents of small irregular solids may sometimes be found by im-
mersing them under water in a prismatic or cylindrical vessel, and observ-
ing the amount by which the level of the water descends when the solid is
withdrawn. The sectional area of the vessel being multiplied by the
descent of the level gives the cubic contents.
Or, weigh the solid in air and in water; the difference is the weight of
water it displaces. Divide the weight in pounds by 62.4 to obtain volume
in cubic feet, or multiply it by 27.7 to obtain the volume in cubic inches.
When the solid is very large and a great degree of accuracy is not
requisite, measure its length, breadth, and depth in several different
places, and take the mean of the measurement for each dimension, and
multiply the three means together.
When the surface of the solid is very extensive it is better to divide it
into triangles, to find the area of each triangle, and to multiply it by the
mean depth of the triangle for the contents of each triangular portion; the
contents of the triangular sections are to be added together.
The mean depth of a triangular section is obtained by measuring the
depth at each angle, adding together the three measurements, and taking
one third of the sum.
PLANE TRIGONOMETRY.
Trigonometrical Functions.
Every triangle has six parts — three angles and three sides. When any
three of these parts are given, provided one of them is a side, the other
parts may be determined. By the solution of a triangle is meant the
determination of the unknown parts of a triangle when certain parts are
given.
The complement of an angle or arc is what remains after subtracting the
angle or arc from 90°.
In general, if we represent any arc by A, its complement is 90° - A.
Hence the complement of an arc that exceeds 90° is negative.
The supplement of an angle or arc is what remains after subtracting the
angle or arc from 180°. If A is an arc its supplement is 180° — A. The
supplement of an arc that exceeds 180° is negative.
The sum of the three angles of a triangle is equal to ISO0. Either angle is
the supplement of the other two. In a right-angled triangle, the right
angle being equal to 90°, each of the acute angles is the complement of
the other.
In all right-angled triangles having the same acute angle, the sides have to
each other the same ratio. These ratios have received special names, as
follows:
If A is one of the acute angles, a the opposite side, b the adjacent side,
and c the hypothenuse.
The sine of the angle A is the quotient of the opposite side divided by the
hypothenuse. Sin A == -•
The tangent of the angle A is the quotient of the opposite side divided by
the adjacent side. Tan A = j--
The secant of the angle A is the quotient of the hypothenuse divided by the
adjacent side. Sec A = -r •
The cosine (cos), cotangent (cot), and cosecant (coscc) of an angle
are respectively the sine, tangent, and secant of the complement of that
angle. The terms sine, cosine, etc., are called trigonometrical functions.
In a circle whose radius is unity, the sine of an arc, or of the angle at the
centre measured by that arc, is the perpendicular let fall from one extremity of
the arc upon the diameter passing through the other extremity.
The tangent of an arc is the line which touches the circle at one extremity
PLANE TRIGONOMETRY.
67
of the arc, and is limited by the diameter (produced) passing through the other
extremity.
The secant of an arc is that part of the produced diameter which is inter"
cepted between the centre and the tangent.
The versed sine of an arc is that part of the diameter intercepted between
the extremity of the arc and the foot of the sine.
In a circle whose radius is not unity, the trigonometric functions of an
arc will be equal to the lines here denned, divided by the radius of the
circle.
it 1C A (Fig. 71) is an angle in the first quadrant, and CF = radius,
The sine of the angle =
FG
Rad
Cos =
Tan
I A
'' Had '
Cosec =
Secant
CL
Rad '
CT
Rad '
Versin =
CG
Rad
Cot =
GA
'' Rad *
=
Rad*
PL
Rad*
FIG.
If radius is 1, then Rad in the denominator is
omitted, and sine = F G, etc.
The sine of an arc = half the chord of twice the
arc.
The sine of the supplement of the arc is the
same as that of the arc itself. Sine of arc B D F
= F G = sin arc F A.
The tangent of the supplement is equal to the tangent of the arc, but
with a contrary sign. Tan BDF = — BM.
The secant of the supplement is equal to the secant of the arc, but with
a contrary sign. Sec BDF = — CM.
Signs of the functions in the four quadrants. — If we divide a
circle into four quadrants by a vertical and a horizontal diameter, the
upper right-hand quadrant is called the first, the upper left the second,
the lower left the third, and the lower right the fourth. The signs of the
functions in the four quadrants are as follows:
First quad. Second quad. Third quad. Fourth quad.
Sine and cosecant, + + — —
Cosine and secant, -4- — — +
Tangent and cotangent, 4- — + —
The values of the functions are as follows for the angles specified:
Angle
o
30
45
60
QO
120
135
150
180
970
S60
Sine
0
1
2
1
V2
v/3
2
1
T~
1
1
2
0
-1
0
X/o
I
1
1
1
\/^~
Cosine
1
~2
V~2
2*
U
2"
2~
-1
0
1
Tangent
0
J_
1
Vs
00
-V3~
-1
1
0
GO
0
Cotangent ....
00
vf
1
I
0
J_
-1
-\/3~3
oo
0
\/3
x/3
Secant
1
2
X/2
2
oo
-2
_x/2~
2
-1
00
1
Cosecant
oc
2
\/2
2
v/3
1
2
v?
2
oo
-1
to
Versed sine ...
d
2-\/3
\/2 i
1
2
1
3
2
V/J-f-l
2+Va
2
1
0
2
V2
V2
2
68 PLANE TRIGONOMETRY.
TRIGONOMETRICAL, FORMULAE.
The following relations are deduced from the properties of similai
triangles (Radius = 1):
cos A : sin A : : 1 : tan A, whence tan A — r ;
cos A
sin A : cos A : : 1 : cot A. " cotan A = —. — 7 ;
sin A
cos Ail nl i sec A, " sec A
cos A'
sin A 1 1 : : 1 : cosec A, " cosec A — -: — 7- ;
sin A
tan A 1 1 . 1 1 1 i cot A •• tan A = 1
cot A
The sum of the square of the sine of an arc and the square of its cosine
equals unity. Sin2 A 4- cos2 A = 1.
Also, 1 4- tan2 A = sec2 A; I + cot2 A = cosec2 A.
Functions of the sum and difference of two angles :
Let the two angles be denoted by A and B, their sum A 4- B =* C, and
their difference A - B by D.
sin (A + B) = sin A cos B 4- cos A sin B; (1)
cos (A + B) = cos A cos B — sin A sin B; (2)
sin (A —. B) = sin A cos B — cos A sin B; (3)
cos (A — B) = cos A cos B + sin A sin B (4)
From these four formulae by addition and subtraction we obtain
sin (A + B) + sin (A - B) = 2 sin A cos B; . . . . (5
sin (A + B) — sin (A — B) =± 2 cos A sin B; . . . . (6
cos (A + B) + cos (A — B) = 2 cos A cos 5; . . . . (7
cos (A — B) — cos (A 4- B) = 2 sin A sin 5 (8
If we put A + B = C, and A — B = Z>, then A = 1/2 (C 4- D) and 5 =
v and we have
sin (7 + sin D = 2 sin 1/2(C 4- D) cos i/2«? - D); . (9)
sin C - sin D = 2 cos 1/2 (C 4- D) sin 1/2 (C7 - Z>); . . (10)
cos C + cos Z>= 20031/2(0 4- D) cos i/2 ((7 - D); . . (11)
cos D - cos C = 2 sin 1/2 (C 4- Z>) sin V2 (C - Z>). . . (12)
Equation (9) may be enunciated thus: The sum of the sines of any two
angles is equal to twice the sine of half the sum of the angles multiplied by
the cosine 9f half their difference. These formulae enable us to transform
a sum or difference into a product.
The sum of the sines of two angles is to their difference as the tangent of
half the sum of those angles is to the tangent of half their difference.
sin A 4- sin B = 2 sin V2(A 4- B) cos V2(A -B) tan V2 (A 4- B}
sin A - sin B 2 cos i/2 (A + B) sin i/2 (A - B) **" tan i/2 (A - B)'
The sum of the cosines of two angles is to their difference as the cotan-
gent.of half the sum of those angles is to the tangent of half their difference.
cos A 4- cos B = 2 cos l/2(A 4- B} cos V2(A -B) = cot l/2(A4-£)[ ( .
cos B - cos A 2 sin 1/2 (A 4- B) sin 1/2 (A - B) tan i/2 (A - B) '
The sine of the sum of two angles is to the sine of their difference as the
sum of the tangents of those angles is to the difference of the tangents.
sin (A 4- B) ^ tan A + tan B .
sin (A - £) tan A - tan B '
(15)
PLANE TRK
MnU+A) ! jj.
3ONOMET
tan (A-f
tan (A —
cot (A +
cot (A —
cos 2 A
cot 2A
cos 1/2 A
cot 1/2 A
BY. 69
£. tan A -f tan 3 .
cos A cos 5
sin (A — 5)
P tan A - tan B .
cosAcosl?" ^ •*'
cos (A 4- B) itanJB-
•• 1 + tan A tan ,6 *
cos A cos 5
cos (A — J5) t
cot B + cot A '
cos A cos 5
Functions of twice an angle:
sin' 2 A = 2 sin A cos A;
tin 01 2 tan A
cot B — cot A
«= cos2 A — sin2 A ;
cot2 A - 1
~ 1 - tan2 A *
Functions of half an angle:
2 cot A
. / 1 — cos A
• J 1 + cos A.
cm 1/2 A- -J. y 2 ;
!a*-L V 2
\/l 4- cos A
tin I/* 1 f i/1 ~ C°S A -
» 1 4- cos A '
V i — cos A
For tables of Trigonometric Functions, see Mathematical Tables.
Solution of Plane Right-angled Triangles.
Let A and B be the two acute angles and C the right angle, and a, 6, and
c the sides opposite these angles, respectively, then we have
d "
1. sin A = cos B = ~ ; 3. tan A
2. cos A = sin £
4. cot A = tan B
1. In any plane right-angled triangle the sine of either of the acute
angles is equal to the quotient of the opposite leg divided by the hypothe-
nuse.
2. The cosine of either of the acute angles is equal to the quotient of
the adjacent leg divided by the hypothenuse.
3. The tangent of either of the acute angles is equal to the quotient of
the opposite leg divided by .the adjacent leg.
4. The cotangent of either of the acute angles is equal to the quotient
of the adjacent Teg divided by the opposite leg.
5. The square of the hypothenuse equals the sum of the squares of the
other two sides.
Solution of Oblique-angled Triangles.
The following propositions are proved in works on plane trigonometry.
In any plane triangle — •
Theorem 1. The sines of the angles are proportional to the opposite
sides.
Theorem 2. The' sum of any two sides is to their difference as the tan-
gent of half the sum of the opposite angles is to the tangent of half their
difference.
Theorem 3. If from any angle of a triangle a perpendicular be drawn to
the opposite side or base, the whole base will be to the sum of the other
two sides as the difference of those two sides is to the difference of the
segments of the base.
CASE I. Given two angles and a side, to find the third angle and the
other two sides. 1. The third angle — 180° — sum of the two angles.
2. The sides may be found by tlie following proportion;
70 ANALYTICAL GEOMETRY.
The sine of the angle opposite the given side is to the sine of the angle
opposite the required side as the given side is to the required side.
CASE II. Given two sides and an angle opposite one of them, to find
the third side and the remaining angles.
The side opposite the given angle is to the side opposite the required
angle as the sine of the given angle is to the sine of the required angle.
The third angle is found by subtracting the sum of the other two from
180°, and the third side is found as in Case I.
CASE III. Given two sides and the included angle, to find the third
side and the remaining angles.
The sum of the required angles is found by subtracting the given angle
from 180°. The difference of the required angles is then found by Theorem
II. Half the difference added to half the sum gives the greater angle, and
half the difference subtracted from half the sum gives the less angle. The
third side is then found by Theorem I.
Another method:
Given the sides c, 6, and the included angle A, to find the remaining side
a and the remaining angles B and C.
From either of the unknown angles, as B, draw a perpendicular Be to
the opposite side.
Then
Ae = c cos A, Be = c sin A, eC = b — Ac Be •*• eC = tan C.
Or, in other words, solve Be, Ae and BeC as right-angled triangles.
CASE IV. Given the three sides, to find the angles.
Let fall a perpendicular upon the longest side from the opposite angle,
dividing the given triangle into two right-angled triangles. The two seg-
ments of the base may be found by Theorem III. There will then be
given the hypothenuse and one side of a right-angled triangle to find the
angles.
For areas of triangles, see Mensuration.
ANALYTICAL GEOMETRY.
Analytical geometry is that branch of Mathematics which has for its
object the determination of the forms and magnitudes of geometrical
magnitudes by means of analysis.
Ordinates and abscissas. — In analytical geometry two intersecting
lines YY', XX' are used as coordinate axes,
XX' being the axis of abscissas or axis of X,
and YY' the axis of ordinates or axis of Y.
A, the intersection, is called the origin of co- /:; 7
ordinates. The distance of any point P /u /
from the axis of Y measured parallel to the /
axis of X is called the abscissa of the point,
as AD or CP, Fig. 72. Its distance from the
f
V'
axis of X, measured parallel to the axis of
Y, is called the ordinate, as AC or PD.
The abscissa and ordinate taken together
are called the coordinates of the point P.
The angle of intersection is usually taken as Y
a right angle, in which case the axes of X pIG 72
and Y are called rectangular coordinates.
The abscissa of a point is designated by the letter x and the ordinate
oy y.
The equations of a point are the equations which express the distances
of the point from the axis. Thus x = a, y = b are the equations of the
point P.
Equations referred to rectangular coordinates. — The equation of
a line expresses the relation which exists between the coordinates of every
point of the line.
Equation of a straight line, y = ax ± b, in which a is the tangent of the
angle the line makes with the axis of -Y, and b the distance above A in
which the line cuts the axis of Y.
Every equation of the first degree between two variables is the equation
ANALYTICAL GEOMETRY. 71
of a straight line, as Ay 4- Bx f C » 0, which can be reduced to the form
y = o# ± 6.
Equation of the distance between two points:
D = vV' - z')2 + (y" - I/O2,
in which x'y', x"y" are the coordinates of the two points.
Equation of a line passing through a given point:
y - y' = a(x - x'),
in which x'y' are the coordinates of the given point, a, the tangent of the
angle the line makes with the axis of x, being undetermined, since any
number of lines may be drawn through a given point.
Equation of a line passing through two given points:
Equation of a line parallel to a given line and through a given point:
y — y' = a(x — x'}.
Equation of an angle V included between two given lines:
a' — a
in which a and a' are the tangents of the angles the lines make with the
axis of abscissas.
If the lines are at right angles to each other tang V = oo, and
1 + a'a = 0.
Equations of an intersection of two lines, whose equations are
y = ax f b, and y = a'x +• &',
b - b' ab' - a'b
x - ~ ^r-rf* and y = T^5T
Equation of a perpendicular from a given point to a given line:
y - y' = - - (x* - x').
Equation of the length of the perpendicular Pi
The circle. — Equation of a circle, the origin of coordinates being at
the centre, and radius -= A':
x2 -f 2/2 = R*.
II the origin is at the left extremity of the diameter, on the axis of X:
y2 = 2Rx - x2.
If the origin is at any point, and the coordinates of the centre are x'y'
(x - z')2 + (y - 2/')2 = #2.
Equation of a tangent to a circle, the coordinates of the point of tan-
gency being x"y" and the origin at the centre,
yy" + xx" = R2.
The ellipse. — Equation of an ellipse, referred to rectangular coordi-
nates with axis at the centre:
AW + £2x2 = A*B\
in which 4 is half tUe transverse axis and £ qajf the conjugate **fs.
72 ANALYTICAL GEOMETRY.
Equation of the ellipse wiien the origin is at the vertex of the transverse
axis;
B2
y* = ~j(2Ax - *').
The eccentricity of an ellipse is the distance from the centre to either
focus, divided by the semi-transverse axis, or
The parameter of an ellipse is the double ordinate passing through the
focus. It is a third proportional to the transverse axis and its conjugate,
or
2»2
2 A : 2B :: 2B : parameter; or parameter = -^—
Any ordinate of a circle circumscribing an ellipse is to the corresponding
ordinate of the ellipse as the semi -trans verse axis to the semi-conjugate.
Any ordinate of a circle inscribed in an ellipse is to the corresponding
ordinate of the ellipse as the semi -conjugate axis to the semi-transverse.
Equation of the tangent to an ellipse, origin of axes at the centre:
A*yy" + Bzxx" = A*B*.
y"x" being the coordinates of the point of tangency.
Equation of the normal, passing through the point of tangency, and
perpendicular to the tangent:
»-v-s5?<*-*">-
The normal bisects the angle of the two lines drawn from the point of
tangency to the foci.
The lines drawn from the foci make equal angles with the tangent.
The parabola. — Equation of the parabola referred to rectangular
coordinates, the origin being at the vertex of its axis, y2 = 2px, in which
2p is the parameter or double ordinate through the focus.
The parameter is a third proportional to any abscissa and its correspond-
ing ordinate, or
x : y :: y : 2p.
Equation of the tangent:
yy" = p(x
y"x" being coordinates of the point of tangency.
Equation of the normal:
y - y" - - ~(x - x").
The sub-normal, or projection of the normal on the axis, is constant, and
equal to half the parameter.
The tangent at any point makes equal angles with the axis and with the
line drawn from the pDint of tangency to the focus.
The hyperbola. — Equation of the hyperbola referred to rectangular
coordinates, origin at the centre:
in which A is the semi-transverse axis and B the semi-conjugate axis.
Equation when the origin is at the right vertex of the transverse axis:
Conjugate and equilateral hyperbolas. — If on the conjugate axis
DIFFERENTIAL CALCULUS. 73
as a transverse, and a focal distance equal to ^A2 + Bz, we construct
the two branches of a hyperbola, the two hyperbolas thus constructed are
called conjugate hyperbolas. If the transverse and conjugate axes are
equal, the hyperbolas are called equilateral, in which case y*-x2= -A*
when A is the transverse axis, and x2 - ?/2 = — B2 when B is the trans-
The parameter of the transverse axis is a third proportional to the trans-
rerse axis and its conjugate.
2 A : 2B :: 2J5 : parameter.
The tangent to a hyperbola bisects the angle of the two lines drawn from
the point of tangency to the foci.
The asymptotes of a hyperbola are the diagonals of the rectangle
described on the axes, indefinitely produced in both directions.
The asymptotes continually approach the hyperbola, and become
tangent to it "at an infinite distance from the centre.
Equilateral hyperbola. — In an equilateral hyperbola the asymptotes
make equal angles with the transverse axis, and are at right angles to each
other. With the asymptotes as axes, and P = ordinate, V — abscissa,
py = a constant. This equation is that of the expansion of a perfect
gas, in which P = absolute pressure, V = volume.
Curveof Expansion of Gases. — PV™ = a constant, or Pi Vin=PzVzn,
in which Fi and ¥2 are the volumes at the pressures Pi and Pz. When
these are given, the exponent n may be found from the formula
.
1
log Pi - log Pz
log Vz — log Vi
Conic sections, — Every equation of the second degree between two
variables will represent either a circle, an ellipse, a parabola or a hyperbola.
These curves are those which are obtained by intersecting the surface of a
cone by planes, and for this reason they are called conic sections.
Logarithmic curve, — A logarithmic curve is one in which one of the
coordinates of any point is the logarithm of the other.
The coordinate axis to which the lines denoting the logarithms are
parallel is called the axis of logarithms, and the other the axis of numbers.
If y is the axis of logarithms and x the axis of numbers, the equation of the
curve is y = log x.
If the base of a system of logarithms is a, we have ay = x, in which y is
the logarithm of x.
Each system of logarithms will give a different logarithmic curve. If
y ^ o, x = 1. Hence every logarithmic curve will intersect the axis of
numbers at a distance from the origin equal to 1.
DIFFERENTIAL CALCULUS.
The differential of a variable quantity is the difference between any two
of its consecutive values; hence it is indefinitely small. It is expressed by
writing d before the quantity, as dx, which is read differential of x.
The term ^ is called the differential coefficient of y regarded as a func-
tion of x. It is also called the first derived function or the derivative.
The differential of a function is equal .to its differential coefficient mul-
tiplied by the differential of the independent variable; thus, -^dx = dy.
The limit of a variable quantity is that value to which it continually
approaches, so as at last to differ from it by less than any assignable
quantity^
The differential coefficient is the limit of the ratio of the increment of
the independent variable to the increment of the function.
The differential of a constant quantity is equal to 0.
The differential of a product of a constant by a variable is equal to the
constant multiplied by the differential of the variable.
If u = Av, du = A dv*
74 DIFFERENTIAL CALCULUS.
In any curve whose equation is y = /(#), the differential coefficient
•5T- = tan a; hence, the rate of increase of the function, or the ascension of
the curve at any point, is equal to the tangent of the angle which the
tangent line makes with the axis of abscissas.
All the operations of the Differential Calculus comprise but two objects:
1. To find the rate of change in a function when it passes from one state
of value to another, consecutive with it.
2. To find the actual change in the function: The rate of change is the
differential coefficient, and the actual change the differential.
Differentials of algebraic functions. — The differential of the sum
or difference of any number of functions, dependent on the same variable,
is equal to the sum or difference of their differentials taken separately:
If u = y 4- z — w, du — dy + dz — dw.
The differential of a product of two functions dependent on the same
variable is equal to the sum of the products of each by the differential of
the other:
_ 74. fj d(uv) _ du_ dv
uv u v
The differential of the product of any number ol functions is equal to
the sum of the products which arise by multiplying the differential of each
function by the product of all the others:
d(uts) — tsdu + usdt + utds.
The differential of a fraction equals the denominator into the diffeiential
of the numerator minus the numerator into the differential of the denom-
inator, divided by the square of the denominator:
_ (tL\ — v^u~ u dv
If the denominator is constant, dv = 0, and dt — — 5- = — •
v v
If the numerator is constant, du = 0, and dt = -$•
The differential of the square root of a quantity is equal to the differen-
tial of the quantity divided by twice the square root of the quantity:
If v = it1/2' or v -
2V u
2
The differential of any power of a function is equal to the exponent multi-
plied by the function raised to a powerless one, multiplied by the differen-
tial of the function, d(un) = nun~ldu.
Formulas for differentiating algebraic functions.
1. d (a) = 0.
2. d (ax) = a dx.
3. d (x + y) = dx + dy.
4. d (x — y) = dx — dy.
5. d (xy) = x dy + y dx.
To find the differential of the form u = (a + bxn)m:
Multiply the exponent of the parenthesis into the exponent of the vari-
able within the parenthesis, into the coefficient of the variable, into the
DIFFERENTIAL CALCULUS. 75
binomial raised to a power less 1 , into the variable within the parenthesis
raised to a power less 1, into the differential of the variable.
du = d(a + bxn)m = mnb(a + bxn)m~l xn~l dx.
To find the rate of change for a given value of the variable:
Find the differential coefficient, and substitute the value of the variable
in the second member of the equation.
EXAMPLE. — If x is the side of a cube and u its volume, u = x3, -r- = 3x2.
Hence the rate of change in the volume is three times the square of the
edge. If the edge is denoted by 1, the rate of change is 3.
Application. The coefficient of expansion by heat of the volume of a
body is three times the linear coefficient of expansion. Thus if the side
of a cube expands 0.001 inch, its volume expands 0.003 cubic inch. 1.0013
= 1.003003001.
A partial differential coefficient is the differential coefficient of a
function of two or more variables under the supposition that only one
of them has changed its value.
A partial differential is the differential of a function of two or more
variables under the supposition that only one of them has changed its
value.
The total differential of a function of any number of variables is equal
to the sum of the partial differentials.
If u = f (xy), the partial differentials are -r- dx, ~rdy.
'
Integrals. — An integral is a functional 'expression derived from a
differential. Integration is the operation of finding the primitive func-
tion from the differential function. It is indicated by the sign/i which is
read "the integral of." Thus fix dx = z2; read, the integral of 2xdx
equals x2.
To integrate an expression of the form mxm~1dx or xmdx, add 1 to the
exponent of the variable, and divide by the new exponent and by the
differential of the variable: JZx^dx = a:3. (Applicable in all cases except
when m = — 1. For Jx dx see formula 2, page 81.)
The integral of the product of a constant by the differential of a vari-
*)le is equal to the constant multiplied by the integral of the differential:
If u -= x* + y3 - z, du = - dx + dy + dz; = 2xdx + 3y* dy - dz.
fax™ dx = a f
xmdx = a
m + 1*
The integral of the algebraic sum of any number of differentials is
equal to the algebraic sum of their integrals:
du = 2axzdx — bydy— z2 dz; ( du= -
Since the differential of a constant is 0, a constant connected with a
variable by the sign + or — disappears in the differentiation; thus
d(a -4- xm) = dxm = mxm~l dx. Hence in integrating a differential
expression we must annex to the integral obtained a constant represented
by C to compensate for the term which may have been lost in differen-
tiation. Thus if we have dy = adx^fdy =» afdx. Integrating,
y = ax ± C.
76 DIFFERENTIAL CALCULUS.
The constant C, which is added to the first integral, must have such a
value as to render the functional equation true for every possible value
that may be attributed to the variable. Hence, after having found the
first integral equation and added the constant C, if we then make
the variable equal to zero, the value which the function assumes will be
the true value of C.
An indefinite integral is the first integral obtained before the value of
the constant C is determined.
A particular integral is the integral after the value of C has been found.
A definite integral is the integral corresponding to a given value of the
'-ariable.
Integration between limits. — Having found the indefinite integral
and the particular integral, the next step is to find the definite integral
and then the definite integral between given limits of the variable.
The integral of a function, taken between two limits, indicated by given
values of x, is equal to the difference of the definite integrals correspond-
ing to those limits. The expression
X
X"
dy
is read: Integral of the differential of y, taken between the limits xf and
x"\ the least limit, or the limit corresponding to the subtractive integral,
being placed below.
Integrate du •— 9xz dx between the limits x = 1 and x = 3, u being equal
to 81 when x = 0. /du = /Qxz dx = 3x3 -f C; C = 81 when x = 0, then
= 3
du = 3(3)3 + 8i> minus 3(1)3 + »i = 73.
Integration of particular forms.
To integrate a differential of the form du = (a + bxn)mxn l dx.
1. If there is a constant factor, place it without the sign of the integral,
and omit the power of the variable without the parenthesis and the differ-
ential ;
2. Augment the exponent of the parenthesis by 1, and then divide
this quantity, with the exponent so increased, by the exponent of the
parenthesis, into the exponent of the variable within the parenthesis,
into the coefficient of the variable. Whence
(wH-Dnd
The differential of an arc is the hypothenuse of a right-angle triangle of
which the base is dx and the perpendicular dy.
If 2 is an arc, dz = ^dxz + dyz z =J ^dx2 + dy*.
Quadrature of a plane figure.
The differential of the area of a plane surface is equal to the ordmate int^
the differential of the abscissa.
ds = y dx.
To apply the principle enunciated in the last equation, in finding the area
of any particular plane surface:
Find the value of y in terms of x, from the equation of the bounding line;
substitute this value in the differential equation, and then integrate
between the required limits of x.
Area of the parabola. — Find the area of any portion of the com-
mon parabola whose equation is
yz = 2px; whence y =
DIFFERENTIAL CALCULUS. 77
Substituting this value of y in the differential equation ds = y dx gives
If we estimate the area from the principal vertex, x = 0, y = 0, and
o
C = 0; and denoting the particular integral by s7, s' = ^ zi/.
o
That is, the area of any portion of the parabola, estimated from the
vertex, is equal to 2/3 of the rectangle of the abscissa and ordinate of the
extreme point. The curve is therefore quadrable.
Quadrature of surfaces of revolution. — The differential of a surface
of revolution is equal to the circumference of a circle perpendicular to the
axis into the differential of the arc of the meridian curve.
• ds =
in which y is the radius of a circle of the bounding surface in a i
pendicular to the axis of revolution, and r is the abscissa, or distance of
the plane from the origin of coordinate axes.
Therefore, to find the volume of any surface of revolution:
Find the value of y and dy from the equation of the meridian curve in
terms of x and dx, then substitute these values in the differential equation,
and integrate between the proper limits of x.
By application of this rule we may find:
The curved surface of a cylinder equals the product of the circum-
ference of the base into the altitude.
The convex surface of a cone equals the product of the circumference of
the base into half the slant height.
The surface of a sphere is equal to the area of four great circles, or equal
to the curved surface of the circumscribing cylinder.
Cubature of volumes of revolution. — A volume of revolution is a
volume generated by the revolution of a plane figure about a fixed line
called the axis.
If we denote the volume by V, dV = xy2 dx.
The area of a circle described by any ordinate y is ny2; hence the differ-
ential of a volume of revolution is equal t9 the area of a circle perpendicular
to the axis into the differential of the axis.
The differential of a volume generated by the revolution of a plane
figure about the axis of Y is nx2 dy.
To find the value of V for any given volume of revolution :
Find the value of y2 in terms of x from the equation of the meridian
curve, substitute this value in the differential equation, and then integrate
between the required limits of x.
By application of this rule we may find:
The volume of a cylinder is equal to the area of the base multiplied
by the altitude.
The volume of a cone is equal to the area of the base into one third the
altitude.
The volume of a prolate spheroid and of an oblate spheroid (formed by
the revolution of an ellipse around its transverse and its conjugate axis
respectively) are each equal to two thirds of the circumscribing cylinder.
If the axes are equal, the spheroid becomes a sphere and its volume =
- nRz X D = - 7rZ>3; R being radius and D diameter.
o o
The volume of a paraboloid is equal to half the cylinder having the same
base and altitude.
The volume of a pyramid equals the area of the base multiplied by one
third the altitude.
Second, third, etc., differentials. — The differential coefficient being
a function of the independent variable, it may be differentiated, and we
thus obtain the second differential coefficient;
78 DIFFERENTIAL CALCULUS
^\ =- ——• Dividing by dxt we have for the second differential
coefficient -r-^, which is read : second differential of u divided by the square
of the differential of x (or dx squared).
The third differential coefficient ^ is read: third differential of u
divided by dx cubed.
The differentials of the different orders are obtained by multiplying
the differential coefficient by the corresponding powers of dx; thus
^ dx3 = third differential of u.
dx3
Sign of the first differential coefficient. — If we have a curve
Artiose equation is y = fx, referred to rectangular coordinates, the curve
will recede from the axis of X when -~ is positive, and approach the
axis when it is negative, when the curve lies within the first angle of the
coordinate axes. For all angles and every relation of y and x the curve
will recede from the axis of X when the ordinate and first differential
coefficient have the same sign, and approach it .when they have different
signs. If the tangent of the curve becomes parallel to the axis of X at any
point ~- = 0. If the tangent becomes perpendicular to the axis of X at
any point ^| = oo. t
Sign of the second differential coefficient. — The second differential
coefficient has the same sign as the ordinate when the curve is convex
toward the axis of abscissa and a contrary sign when it is concave.
Maclaurin's Theorem. — For developing into a series any function
of a single variable as u = A + Bx + Cxz + Dx3 + Ex*, etc., in which
A, B, C, etc., are independent of x:
In applying the formula, omit the expressions x «= 0, although the
coefficients are always found under this hypothesis.
EXAMPLES:
(a + x)m = am + mam~l x +
. - i - 4 +
a + x a a2 a3 a4 an + 1
Taylor's Theorem. — For developing into a series any function of the
sum or difference of two independent variables, as u' «= j(x ± y):
in which u is what u' becomes when y — 0, ~ is what •—• becomes when
y — 0, etc.
Maxima and minima. — To find the maximum or minimum value
of a function of a single variable:
1. Find the first differential coefficient of the function, place it equal
to 0, and determine the roots of the equation.
2. Find the second differential coefficient, and substitute each real root,
DIFFERENTIAL CALCULUS. 79
In succession, for the variable in the second member of the equation.
Each root which gives a negative result will correspond to a maximum
value of the function, and each which gives a positive result will corre-
spond to a minimum value.
EXAMPLE. — To find the value of x which will render the function y a
maximum or minimum in the equation of the circle, y2 + x2 = R2;
f| - - y; making - jj ~ 0 gives x - 0.
The second differential coefficient is: ~ = - x +3 y* •
When x — 0, y — R; hence -^ = - ^» which being negative, y is a
maximum for R positive.
In applying the rule to practical examples we first find an expression for
the function which is to be made a maximum or minimum.
2. If in such expression a constant quantity is found as a factor, it may
be omitted in the operation; for the product will be a maximum or a mini-
mum when the variable factor is a maximum or a minimum.
3. Any value 9f the independent variable which renders a function a
maximum or a minimum will render any power or root of that function a
maximum or minimum; hence we may square both members of an equa-
tion to free it of radicals before differentiating.
By these rules we may find :
The maximum rectangle which can be inscribed in a triangle is one
whose altitude is half the altitude of the triangle.
The altitude of the maximum cylinder which can be inscribed in a cone
is one third the altitude of the cone.
'The surface of a cylindrical vessel of a given volume, open at the top,
is a minimum when the altitude equals half the diameter.
The altitude of a cylinder inscribed in a sphere when its convex surface is
a maximum is r v^2. r = radius.
The altitude of a cylinder inscribed in a sphere when the volume is a
maximum is 2r •*• Vs.
Maxima and Minima without the Calculus. — In the equation
y = a : 4- bx + ex2, in which a, &, and c are constants, either positive or
negative, if c be positive y is a minimum when x = — b -*- 2c; if c be
negative y is a maximum when x = — b •*• 2c. In the equation y = a +
bx +c/x, y is a, minimum when bx = c/x.
APPLICATION. — The cost of electrical transmission is made up (1) of
fixed charges, such as superintendence, repairs, cost of poles, etc., which
may be represented by a; (2) of interest on cost of the wire, which varies
with the sectional area, and may be represented by bx; and (3) of cost of
the energy wasted in transmission, which varies inversely with the area
of the wire, or c/x. The total cost, y = a 4- bx + c/x, is a minimum
when item 2 = item 3, or bx = c/x.
Differential of an exponential function.
If u = ax . . . (1)
then du = dax = axkdx (2)
in which k is a constant dependent on a.
The relation bet ween a and k is o* = e; whence a = e* .... (3)
in which e = 2.7182818 . . . the base of the Naperian system of loga-
rithms.
Logarithms. — The logarithms in the Naperian system are denoted by
I, Nap. log or hyperbolic log, hyp. log, or loge ; and in the common system
Iways by log.
fc — Nap. logo; log a = k log e (4)
80 DIFFERENTIAL CALCULUS.
The common logarithm of e, = log 2.7182818 . . . «* 0.4342945 . . . ;
Is called the modulus of the common system, and is denoted by Af.
Hence, if we have the Naperian logarithm of a number we can find the
common logarithm of the same number by multiplying by the modulus.
Reciprocally, Nap. log = com. log X 2.3025851.
If in equation (4) we make a = 10, we have
1 = k log e, or ? = log e = M .
That is, the modulus of the common system is equal to 1, divided by the
Naperian logarithm of the common base.
From equation (2) we have
du dax
— *— •- kdx.
u ax
If we make a = 10, the base of the common system, x = log u, and
j /i j du „ 1 du ^ f
d (log u) - dx = ~ X £ - - X M.
That is, the differential of a common logarithm of a quantity is equal to
the differential of the quantity divided by the quantity, into the modulus.
If we make a = e, the base of the Naperian system, x becomes the Nape-
rian logarithm of u, and k becomes 1 (see equation (3)); hence M = 1,
and
du du
d (Nap. log u) = dx — — - ; = — •
ax u
That is, the differential of a Naperian logarithm of a quantity is equal to
the differential of the quantity divided by the quantity; and in the
Naperian system the modulus is 1.
Since k is the Naperian logarithm of a, du = ax I a dx. That is, the
differential of a function of the form ax is equal to the function, into the
Naperian logarithm of the base .a, into the differential of the exponent.
If we have a differential in a fractional form, in which the numerator is
the differential of the denominator, the integral is the Naperian logarithm
of the denominator. Integrals of fractional differentials of other forms
are given below:
Differential forms which have known integrals; exponential
functions. (I = Nap. log.)
+ C;
4.
6. I • , "^ - l(x ± a + Vx*~± 2ax) + C;
CALCULUS.
81.
7.
8.
9.
10.
2a cte
-j
f — |«^
J x\/a* + x*
2a<ta = l la - Va2 - x~A + C;
a2 - a:2 \ a + ^a2 - z2/
r *~2^ =_z fi + vi + o«s«\ [ c
x -{- x » *
Circular functions. — Let z denote an arc in the first quadrant, y its
sine, x its cosine, y its versed sine, and t its tangent; and the following nota-
tion be employed to designate an arc by any one of its functions, viz.,
sin"1 y denotes an arc of which y is the sine,
cos"1^ " " " " " x is the cosine,
tan"^ " " " " " Ms the tangent,
(read "arc whose sine is ?/," etc.), — we have the following differential
forms which have known integrals (r = radius):
| cos zdz •= sin z+ C\
I — sin z dz •= cos z + C\
sin z dz = versin z + (7;
The cycloid. — If a circle be rolled along a straight line, any point of
the circumference, as P, will describe a curve which is called a cycloid.
The circle is called the generating circle, and P the generating point.
SLIDE
The transcendental equation of the cycloid is
x = versin ~i v
and the differential equation is dx =
The area of the cycloid is equal to three times the
area of the generating circle.
The surface described by the arc of a cycloid when
revolved about its base is equal to 64 thirds of the
generating circle.
The volume of the solid generated by revolving
a cycloid about its base is equal to five eighths of the
circumscribing cylinder.
Integral calculus. — In the integral calculus we
have to return from the differential to the function
from which it was derived. A number of differential
expressions are given above, each of which has a
known integral corresponding to it, which, being
differentiated, will produce the given differential.
In all classes of functions any differential expression
may be integrated when it is reduced to one of the
known forms; and the operations of the integral cal-
culus consist mainly in making such transformations
of given differential expressions as shall reduce them
to equivalent ones whose integrals are known.
For methods of making these transformations
reference must be made to the text-books on differen-
tial and integral calculus.
THE SLIDE RULE.
The slide rule is based on the principles that the
addition of logarithms multiplies the numbers which
they represent, and subtracting logarithms divides
the numbers. By its use the operations of multiplica-
tion, division, the finding of powers and the extraction
of roots, may be performed rapidly and with an ap-
proximation to accuracy which is sufficient for many
purposes. With a good 10-inch Mannheim rule the
results obtained are usually accurate to 1/4 of 1 per
cent. Much greater accuracy is obtained with cylin-
drical rules like the Thacher.
The rule (see Fig. 73) consists of a fixed and a
sliding part both of which are ruled with logarithmic
scales; that is, with consecutive divisions spaced not
equally, as in an ordinary scale, but in proportion
to the logarithms of a series of numbers from 1 to
10. By moving the slide to the right or left the loga-
rithms are added or subtracted, and multiplication
or division of the numbers thereby effected. The
scales on the fixed part of the rule are known as the
A and D scales, and those on the slide as the B and
C scales. A and B are the upper and C and D
are the lower scales. The A and B scales are each
divided into two, left hand and right hand, each
being a reproduction, one half the size, of the C and
D scales. A "runner," which consists of a framed
glass plate with a fine vertical line on it, is used to
facilitate some of the operations. The numbering on
each scale begins with the figure 1, which is called
FIG. 73.
THE SLIDE RULE. 83
the "index" of the scale. In using the scale the figures 1, 2, 3, etc., are
to be taken either as representing these numbers, or as 10, 20, 30, etc.,
100, 200, 300, etc., 0.1, 0.2, 0.3, etc., that is, the numbers multiplied or
divided by 10, 100, etc., as may be most convenient for the solution of a
given problem.
The following examples will give an idea of the method of using the
glide rule,,
Proportion. — Set the first term of a proportion on the C scale opposite
the second term on the D scale, then opposite the third term on the C
scale read the fourth term on the D scale.
EXAMPLE, — Find the fourth term in the proportion 12 : 21 :: 30 : x.
Move the slide to the right until 12 on C coincides with 21 on Z), then
opposite 30 on C read x on D = 52.5. The A and B scales may be used
instead of C and D.
Multiplication. — Set the index or figure 1 of the C scale to one of the
factors on ZX
EXAMPLE. — 25 X 3. Move the slide to the right until the left index
of C coincides with 25 on the D scale. Under 3 on the C scale will be
found the product on the Z) scale, = 75.
Division, — Place the divisor on C opposite the dividend on D, and the
quotient will be found on D under the index of C.
EXAMPLE. — 750 •*- 25. Move the slide to the right until 25 on C coin-
cides with 750 on D. Under the left index of C is found the quotient on
D, = 30.
Combined Multiplication and Division. — Arrange the factors to be
multiplied and divided in the form of a fraction with one more factor in
the numerator than in the denominator, supplying the factor 1 if necessary.
Then perform alternate division and multiplication, using the runner to
Indicate the several partial results.
4X5X8
EXAMPLE^ — — 3 .. g = 8.9 nearly. Set 3 on C over 4 on D, set
O X O
runner to 5 on C, then set 6 on C under the runner, and read under 8 on
C the result 8*9 - on D.
Involution and Evolution. — The numbers on scales A and B are the
squares of their coinciding numbers on the scales C and D, and also the
numbers on scales C and D are the square roots of their coinciding num-
bers on scales A and B.
EXAMPLE, — 42 = 16. Set the runner over 4 on scale D and read 16
on A.__
^16 = 4. Set the runner over 16 on A and read 4 on D.
In extracting square roots, if the number of digits is odd, take the num-
ber on the left-hand scale of A ; if the number of digits is even, take the
number on the right-hand scale of A.
To cube a number perform the operations of squaring and multiplica-
tion.
EXAMPLEO — 2s = 8. Set the index of C over 2 on D, and above 2
on B read the result 8 on A0
Extraction of the Cube Root. — Set the runner over the number on A,
then move the slide until there is found under the runner on B, the same
number which is found under the index of C on D; this number is the
cube root desired.
EXAMPLE — ^8=2. Set the runner over 8 on A, move the slide
along until the same number appears under the runner on B and under
the index of C on D; this will be the number 2.
Trigonometrical Computations. — On the under side of the slide (which
is reversible) are placed three scales, a scale of natural sines marked St
a scale of natural tangents marked T, and between these a scale of equal
parts. To use these scales, reverse the slide, bringing its under side to
the top. Coinciding with an angle on S its sine will be found on At and
coinciding with an angle on T will be found the tangent on D. Sines and
tangents can be multiplied or divided like numbers.
84 LOGARITHMIC RULED PAPER*
LOGARITHMIC RULED PAPER.
W. F. Durand (Eng. News, Sept. 28, 1893.)
As plotted on ordinary cross-section paper the lines which express
relations between two variables are usually curved, and must be plotted
point by point from a table previously computed. It is only where the
exponents involved in the relationship are unity that the line becomes
straight and may be drawn immediately on the determination of two of
its points. It is the peculiar property of logarithmic section paper that
for all relationships which involve multiplication, division, raising to
powers, or extraction of roots, the lines representing them are straight.
Any such relationship may be represented by an equation of the form:
y = Bxn. Taking logarithms we have: log y = log B 4- n log x.
Logarithmic section paper is a short and ready means of plotting such
logarithmic equations. The scales on each side are logarithmic instead
of uniform, as in ordinary cross-section paper. The numbers and divi-
sions marked are placed at such points that their distances from the origin
are proportional to the logarithms of such numbers instead of to the
numbers themselves. If we take any point, as 3, for example, on such a
scale, the real distance we are dealing with is log 3 to some particular
base, and not 3 itself. The number at the origin 9f such a scale is always
1 and not 0, because 1 is the number whose logarithm is 0. This 1 may,
however, represent a unit of any order, so that quantities of any size
whatever may be dealt with.
If we have a series of values of x and of Bx , and plot on logarithmic
section paper x horizontally and Bxn vertically, the actual distances
Involved will be log x and log (Bxn), or log B + n log x. But these dis-
tances will give a straight line as the locus. Hence all relationships
expressible in this form are represented on logarithmic section paper by
straight lines. It follows that the entire locus may be determined from
any two points; that is, from any two values of Bxn\ or, again, by any one
point and the angle of inclination; that is, by one value of Bxn and the
value of ft, remembering that n is the tangent of the angle of inclination
to the horizontal.
A single square plotted on each edge with a logarithmic scale from 1
fco 10 may be made to serve for any number whatever from 0 to oo. Thus
to express graphically the locus of the equation: y = rrs/2. Let Fig. 74
denote a square cross-sectioned with logarithmic scales, as described.
Suppose that there were joined to it and to each other on the right and
above, an indefinite series of such squares similarly divided. Then, con-
sidering, in passing from one square to an adjacent one to the right or
above, that the unit becomes of next higher order, such a series of squares
would, with the proper variation of the unit, represent all values of either
x or y between 0 and oo,
Suppose the original square divided on the horizontal edge into 3 parts,
and on the vertical edge into 2 parts, the points of division being at A,
B, D, F, G, I. Then lines joining these points, as shown, will be at an
inclination to the horizontal whose tangent is 3/2. Now, beginning at 0,
OF will give the value of a^/2 for values of x from 1 to that denoted by HF,
or OB, or about 4.6. For greater values of x the line would run into the
adjacent square above, but the location of this line, if continued, would
be exactly similar to that of BD in the square before us. Therefore the
line BD will give values of :r3/2 for x between B and C, or 4.6 and 10, the
corresponding values of y being of the order of tens, and ranging from 10
to 31.3. For larger values of x the unit of x is of the higher order, and
we run into an adjacent square to the right without change of unit for y.
In this square we should traverse a line similar to IG. Therefore, by a
proper choice of units we may make use of IG for the determination of
values of £3/2 where x lies between 10 and the value at G, or about 21.5.
We should then run into an adjacent square above, requiring the unit on
y to be of the next higher order, and traverse a line similar to AEt which
takes us finall
LOGARITHMIC RULED PAPER.
85
takes us finally to the opposite corner and completes the cycle. Follow-
ing this, the same series of lines would result for numbers of succeeding
orders.
The value of x3/2 for any value of x between 1 and oo may thus be read
from one or another of these lines, and likewise for any value between
0 and 1. The location of the decimal point is readily found by a little
attention to the numbers involved. The limiting values of x for any
given line may be marked on it, thus enabling a proper choice to be readily
made. Thus, in Fig. 74 we mark OF as 0 - 4.6, BD as 4.6 - 10, 1G as
O p
10 — 21.5, and A E as 21.5 — 100. If values of x less than 1 are to be
dealt with, AE will serve for values of x between 1 and 0.215, IG for
values between 0.215 and 0.1, BD for values between 0.1 and 0.046, and
OF for values between 0.046 and 0.001.
The principles involved in this case may be readily extended to any
other, and in general if the exponent be represented by m/n, the complete
set of lines may be drawn by dividing one side of the square into m and
the other into n parts, and joining the points of division as in Fig. 74. In
all there will be (m -f n — 1) lines, and opposite t9 any point on X there
will be n lines corresponding to the n different beginnings of the nth root
86 MATHEMATICAL TABLES.
of the mth power, while opposite to any point on Y will be m lines corre-
sponding to the different beginnings of the mth root of the nth power.
Where the complete number of lines would be quite large, it is usually
unnecessary to draw them all, and the number may be limited to those
necessary to cover the needed range in the values of x.
If, instead of the equation y = xnt we have a constant term as a multi-
plier, giving an equation in the more general form y = Bxn, or Bx m/n,
there will be the same number of lines and at the same inclination, but
all shifted vertically through a distance equal to log B. If, therefore,
we start on the axis of Y at the point B, we may draw in the same series
of lines and in a similar manner. In this way PQ represents the locus
giving the values of the areas of circles in terms of their diameters, being
the locus of the equation A = 1/4 » d2 or y = 1/4"' £2-
If in any case we have x in the denominator such that the equation is
in the form y = B/xn, this is equal to y = Bx~n. and the same general
rules hold. The lines in such case slant downward to the right instead of
upward. Logarithmic ruled paper, with directions for the use, may be
obtained from Keuffel & Esser Co., 127 Fulton St., New York.
MATHEMATICAL TABLES.
Formula for Interpolation.
(n-1) (n-2) ^ , (n-1) (n-2) (n-3)
— - -- - — ^ — -
(n —
—
ai = the first term of the series; n, number of the required term; an, the
required term; di, dz, d3, first terms of successive orders of differences
between ai, a2, a3, a4, successive terms.
EXAMPLE. — Required the log of 40.7, logs of 40, 41 , 42, 43 being given as
below.
Terms alt a2, as, a4(: 1.6021 1.6128 1.6232 1.6335
1st differences: 0.0107 0.0104 0.0103
2d - 0.0003 - 0.0001
3d + 0.0002
For log. 40, n = 1; log 41, n= 2; for log 40.7, n — 1.7; n — 1 = 0.7: n — 2
= - 0.3; n - 3 =- 1.3.
an =1.6021+0.7 (0.0107) +(0.7)(-0.3K-0.0003) +(0.7)(-0.3)(- 1.3)(0.0002!|
= 1.6021 4- 0.00749 + 0.000031 4- 0.000009 = 1.6096 +.
RECIPROCALS OF NUMBERS.
RECIPROCALS OF NUMBERS.
87
No.
Recipro-
cal.
No.
Recipro-
cal.
No.
Recipro-
cal.
No.
Recipro-
cal.
No.
Recipro-
cal.
1
1.00000000
64
01562500
127
•00787402
190
.00526316
253
.00395257
2
.50000000
5
01538461
8
•00781250
1
.C0523560
4
.00393701
3
.33333333
6
01515151
9
•00775194
2
.00520833
5
.00392157
4
.25000000
7
01492537
130
00769231
3
.00518135
6
.00390625
5
.20000000
8
01470588
1
00763359
4
.00515464
7
.00389105
6
.16666667
9
01449275
2
00757576
5
.00512820
8
.0038/597
7
.14285714
70
01428571
3
•00751880
6
.00510204
9
.00386100
8
.12500COO
1
•01408451
4
•00746269
7
.00507614
260
.00384615
9
11111111
2
•01388889
5
00740741
8
.00505051
1
.00383142
10
'.10000000
3
•01369863
6
•00735294
9
.00502513
2
.00381679
11
.09090909
4
•01351351
7
-00729927
200
.00500000
3
.00380228
12
.08333333
5
•01333333
8
-00724638
1
.00497512
4
.00378786
13
.07692308
6
01315789
9
-00719424
2
.00495049
5
.00377358
14
.07142857
7
•01298701
140
•00714286
3
.0049261 1
6
.00375940
15
.06666667
8
•01282051
1
•00709220
4
.004901%
7
.00374532
16
.06250000
9
•01265823
2
•00704225
5
.00487805
8
.00373134
17
.05882353
80
•01250000
3
-00699301
6
.00485437
9
.00371747
18
.05555556
1
•01234568
4
•00694444
7
.00483092
270
.00370370
19
.05263158
2
01219512
5
.00689655
8
.00480769
1
.00369004
20
.05000000
3
•01204819
6
.00684931
9
.00478469
2
.00367647
.04761905
4
•01190476
7
.00680272
210
.00476190
3
.00366300
^
.04545455
£
01176471
8
.00675676
11
.00473934
4
.00364%3
2
.04347826
e
•01 162791
9
-00671141
12
.00471698
5
.00363636
4
.04166667
7
•01149425
150
-00666667
13
.00469484
6
.00362319
c
.04000000
8
•01136364
1
.00662252
14
.00467290
7
.00361011
6
.03846154
9
01 123595
2
.00657895
15
.00465116
8
.00359712
T
.03703704
90
•01111111
3
.00653595
16
.00462963
9
.00358423
8
.03571429
1
01098901
4
.00649351
17
.00460829
280
.00357143
g
.03448276
2
010S6956
5
.00645161
18
.00458716
1
.00355872
30
.03333333
3
•01075269
6
.00641026
19
.00456621
2
.00354610
.03225806
4
•01063830
7
.00636943
220
.00454545
3
.00353357
j
.03125000
c
01052632
8
.0063291 1
|
.00452489
4
.00352113
•
.03030303
6
•01041667
9
.00628931
2
.00450450
5
.00350877
4
.02941176
7
•01030928
160
.00625000
3
.00448430
6
.0034%50
«
.02857143
8
•01020408
1
.00621118
4
.00446429
7
.00348432
6
.027/7778
9
•01010101
2
.00617284
5
.00444444
8
.00347222
j
.02702703
100
•01000000
3
.00613497
6
.00442478
9
.00346021
8
.02631579
1
•00990099
4
.00609756
7
.00440529
290
.00344828
g
.02564103
2
•00980392
5
.00606061
8
.004385%
1
.00343643
40
.02500000
2
•00970874
6
.00602410
9
.00436681
2
.00342466
|
.02439024
A
•00% 1538
7
.00598802
230
.00434783
3
.00341297
'4
.02380952
c
•00952381
8
.00595238
1
.00432900
4
.00340136
\
.02325581
t
•009433%
9
00591716
2
.00431034
5
.00338983
t
.02272727
7
.00934579
170
.00588235
3
.00429184
6
.00337838
i
02222222
8
-00925926
1
.00584795
4
.00427350
7
.00336700
6
.02173913
9
.00917431
2
.00581395
5
.00425532
8
.00335570
7
.02127660
110
.00909091
3
.00578035
6
.00423729
9
00334448
8
.02083333
11
.00900901
4
.00574713
7
.00421941
300
.00333333
c
.02040816
12
.00892857
5
.00571429
8
.00420168
.00332226
50
.02000000
13
.00884956
6
.00568182
9
.00418410
2
.00331126
1
.01960784
14
.00877193
7
.00564972
240
.00416667
3
.00330033
j
.01923077
15
.00869565
8
.00561798
1
.00414938
4
.00328947
-
.01886792
16
.00862069
9
.00558659
2
.00413223
5
.00327869
/
.01851852
17
.00854701
180
.00555556
3
.00411523
6
.00326797
c
.01818182
18
.00847458
1
.00552486
4
.00409836
7
.00325733
(
.01785714
19
.00840336
2
.00549451
5
.00408163
8
.00324675
7
.01754386
120
.00833333
3
.00546448
6
.00406504
9
.00323625
8
.01724138
1
.00826446
4
.00543478
7
.00404858
310
.00322581
9
.01694915
2
.00819672
5
.00540540
8
.00403226
11
.00321543
60
.01666667
3
.00813008
6
.00537634
9
.00401606
12
.00320513
1
.01639344
4
.00806452
7
.00534759
250
.00400000
-13
.00319489
2
.01612903
5
.00800000
8
.00531914
1
.00398406
14
.00318471
3
.01587302
6
.00793651
9
.00529100
Z
.00396825
15
.00317460
88
MATHEMATICAL TABLES.
No.
Recipro-
cal.
No.
Recipro-
cal.
No.
Recipro-
cal.
No.
Recipro-
cal.
No.
Recipro-
cal.
~ 316
.00316456
381
.00262467
446
.00224215
511
.00195695
576
.00173611
17
.00315457
2
.00261780
7
.00223714
12
.00195312
7
.00173310
18
.00314465
3
.00261097
8
.00223214
13
.00194932
8
.00173010
19
.00313480
4
.00260417
9
.00222717
14
.00194552
9
.00172712
320
.00312500
5
.00259740
450
.00222222
15
.00194175
580
.00172414
1
.00311526
6
.00259067
1
.00221729
16
.00193798
1
.00172117
2
.00310559
7
.00258398
2
.00221239
17
.00193424
2
.00171821
3
.00309597
8
.00257732
3
.00220751
18
.00193050
3
.00171527
4
.00308642
9
.00257069
4
.00220264
19
.00192678
4
.00171233
5
.00307692
390
.00256410
5
.00219780
520
.00192308
5
.00170940
6
.00306748
1
.00255754
6
.00219298
1
00191939
6
.00170648
7
.00305810
2
.00255102
7
.00218818
2
.00191571
7
.00170358
8
.00304878
3
.00254453
8
.00218341
3
.00191205
8
.00170068
9
.00303951
4
.00253807
9
.00217865
4
00190840
9
.00169779
330
.00303030
5
.00253165
460
.00217391
5
.00190476
590
.00169491
1
.00302115
6
.00252525
1
.00216920
6
.00190114
1
.00169205
2
.00301205
7
.00251889
2
.00216450
7
.00189753
2
.00168919
3
.00300300
8
.00251256
3
.00215983
8
.00189394
3
.00168634
4
.00299401
9
.00250627
4
.00215517
9
.00189036
4
.00168350
5
.00298507
400
.00250000
5
.00215054
530
.00188679
5
.00168067
6
.00297619
1
.00249377
6
.00214592
1
.00188324
6
.00167785
7
.00296736
2
.00248756
7
.00214133
2
.00187970
7
.00167504
8
.00295858
3
.00248139
8
.00213675
3
.00187617
8
.00167224
9
.00294985
4
.00247525
9
.00213220
4
.00187266
9
.00166945
340
.00294118
5
.00246914
470
.00212766
5
.00186916
600
.00166667
1
.00293255
6
.00246305
1
.00212314
6
.00186567
1
00166389
2
.00292398
7
.00245700
2
.00211864
7
.00186220
2
.00166113
3
.00291545
8
.00245098
3
.00211416
8
.00185874
3
.00165837
4
.00290698
9
.00244499
4
.00210970
9
.00185528
4
.00165563
5
.00289855
410
.00243902
5
.00210526
540
.00185185
5
.00165289
6
.00289017
11
.00243309
6
.00210084
1
.00184843
6
00165016
7
.00288184
12
.00242718
7
.00209644
2
.00184502
7
.00164745
8
.00287356
13
.00242131
8
.00209205
3
.00184162
8
.00164474
9
.00286533
14
.00241546
9
.00208768
4
.00183823
9
.00164204
350
,00285714
15
.00240964
480
.00208333
5
.00183486
610
.00163934
1
.00284900
16
.00240385
1
.00207900
6
00183150
11
00163666
2
.00284091
17
.00239808
2
.00207469
7
.00182815
12
.00163399
3
.00283286
18
.00239234
3
.00207039
8
.00182482
13
00163132
4
.00282486
19
.00238663
4
.00206612
9
00182149
14
.00162866
5
.00281690
420
.00238095
5
.00206186
550
.00181818
15
.00162602
6
.00280899
1
.00237530
6
.00205761
1
00181488
16
00162338
7
.00280112
2
.00236967
7
.00205339
2
.00181159
17
.00162075
8
.00279330
3
.00236407
8
.00204918
3
.00180832
18
00161812
9
.00278551
4
.00235849
9
.00204499
4
00180505
19
.00161551
360
.00277778
5
.00235294
490
.00204082
5
.00180180
620
00161290
1
.00277008
6
.00234742
1
.00203666
6
00179856
1
.00161031
2
.00276243
7
.00234192
2
.00203252
7
.00179533
2
00160772
3
.00275482
8
.00233645
3 .00202840
8
00179211
. 3
00160514
4
.00274725
9
.00233100
4
.00202429
9
.00178891
4
.00160256
5
.00273973
430
.00232558
5
.00202020
560
.00178571
5
00160000
6
.00273224
1
.00232019
6
.00201613
1
.00178253
6
.00159744
7
.00272480
2
.00231481
7
.00201207
2
.00177936
7
00159490
8
.00271739
3
.00230947
8
.00200803
3
.00177620
8
.00159236
9
.00271003
4
.00230415
9
.00200401
4
.00177305
9
00158982
370
.00270270
5
.00229885
500
.00200000
5
.00176991
630
.00158730
1
.00269542
6
.00229358
1
.00199601
6
.00176678
1
00158479
2
.00268817
7
.00228833
2
.00199203
7
00176367
2
.00158228
^
.00268096
8
.00228310
3
.00198807
8
.00176056
3
00157978
4
.00267380
9
.00227790
4
.00198413
9
.00175747
4
.00157729
e
.00266667
440
.00227273
5
.00198020
570
.00175439
5
00157480
t
.00265957
1
.00226757
6
.00197628
1
00175131
6
.00157233
7
.00265252
2
.00226244
7
.00197239
2
.00174825
7
.00156986
8
.00264550
3
.00225734
8
.00196850
3
.00174520
8
.00156740
9
.00263852
4
.00225225
9
.00196464
.00174216
9
.00156494
380
.00263158
5
.00224719
510
.00196078
5
.00173913
640
.00156250
RECIPROCALS OF NUMBERS.
89
No.
Recipro-
cal.
No.
Recipro-
cal.
No.
Recipro-
cal.
No.
Recipro-
cal.
No.
Recipnx
cal.
641
.001560%
706
.00141643
771
.00129702
836
.00119617
901
.001 10988
2
.00155763
7
00141443
2
.00129534
7
.001 19474
2
.001 10865
3
.00155521
8
00141243
3
.00129366
8
.00119332
3
.00110742
4
.00155279
9
.00141044
4
.00129199
9
.00119189
4
.00110619
5
.00155039
710
00140345
5
.00129032
840
.00119048
5
.00110497
6
.00154799
11
.00140647
6
.00128866
1
.001 18906
6
.001 10375
7
.00154559
12
.00140449
7
.00128700
2
.001 18765
7
.00110254
8
.00154321
13
.00140252
8
.00128535
3
.001 18624
8
.00110132
9
.00154033
14
.00140056
9
.00128370
4
.00118483
9
.00110011
650
.00153846
15
.00139860
780
.00128205
5
.001 18343
910
.00109890
1
.00153610
16
.00139665
1
.00128041
6
.001 18203
11
.00109769
2
.00153374
17
.00139470
2
.00127877
7
.00118064
12
.00109649
3
.00153140
18
.00139276
3
.00127714
8
.00117924
13
.00109529
4
.00152905
19
.00139032
4
.00127551
9
.00117786
14
.00109409
5
.00152672
720
.00138889
5
.00127388
850
.00117647
15
.00109290
6
.00152439
1
.00138696
6
.00127226
1
.00117509
16
.00109170
7
.00152207
2
.00138504
7
.00127065
2
.00117371
17
.00109051
8
.00151975
3
.00138313
8
.00126904
3
.00117233
18
.00108932
9
.00151745
4
.00138121
9
.00126743
4
.001170%
19
00108814
660
.00151515
5
00137931
790
.00126582
5
.001 16959
920
.00108696
.00151236
6
.00137741
1
.00126422
6
.001 16822
1
.00108578
2
.00151057
7
.00137552
2
.00126263
7
.001 16686
2
.00108460
3
.00150330
8
.00137363
3
.00126103
8
.00116550
3
.00108342
4
.00150602
9
.00137174
4
.00125945
9
.00116414
4
.00108225
5
.00150376
730
00136936
5
.00125786
860
.00116279
5
.00108108
6
.00150150
1
.00136799
6
.00125628
1
.00116144
6
.00107991
7
.00149925
2
00136612
7
.00125470
2
.00116009
7
.00107875
8
.00149701
3
.00136426
8
.00125313
3
.00115875
8
.00107759
9
.00149477
4
00136240
9
.00125156
4
.00115741
9
.00107.643
670
.00149254
5
.00136054
800
.00125000
5
.00115607
930
.00107527
1
.00149031
6
00135870
1
.00124844
6
.00115473
1
.00107411
2
.00148809
7
.00135685
2
.00124688
7
.00115340
2
.00107296
4
.00148588
8
00135501
3
.00124533
8
.00115207
3
.00107181
4
.00148368
9
.00135318
4
.00124378
9
.00115075
4
.00107066
j
.00148148
740
00135135
5
.00124224
870
.001 14942
5
.00106952
(
.00147929
1
.00134953
6
.00124069
1
.00114811
6
.00106838
7
.00147710
2
00134771
7
.00123916
2
.00114679
7
.00106724
8
.00147493
3
.00134589
8
.00123762
3
.00114547
8
.00106610
9
.00147275
4
.00134409
9
.00123609
4
.00114416
9
.00106496
680
.00147059
c
.00134228
810
.00123457
5
.00114286
940
.00106383
1
.00146843
6
00134048
11
.00123305
6
.00114155
1
.00] 06270
2
.00146628
7
.00133869
12
.00123153
7
.00114025
2
.00106157
3
.00146413
8
00133690
13
.00123001
8
.00113895
3
00106044
z
.00146199
9
.00133511
14
.00122850
9
.00113766
4
.00105932
c
.00145985
750
00133333
15
.00122699
880
.00113636
5
00105820
(
.00145773
1
.00133156
16
.00122549
1
.00113507
6
00105708
j
.00145560
2
00132979
17
.00122399
2
.00113379
7
00105597
8
.00145349
.00132802*
18
.00122249
3
.00113250
8
.00105485
9
.00145137
4
00132626
19
.00122100
4
.00113122
9
00105374
690
.00144927
c
.00132450
820
.00121951
5
.001 12994
950
.00105263
J
.00144718
6
00132275
]
.00121803
6
.00 H 2867
1
.00105152
4
.00144509
7
.00132100
2
.00121654
7
.00112740
2
.00105042
2
.00144300
8
.00131926
3
.00121507
8
.00112613
3
.00104932
4
.00144092
9
.00131752
4
.00121359
9
.001 12486
4
.00104822
c
.00143885
760
.00131579
5
.00121212
890
.001 12360
5
.00104712
6
.00143678
1
.00131406
6
.00121065
1
.00112233
6
00104602
7
.00143472
2
.00131234
7
.00120919
2
.00112108
7
.00104493
8
.00143266
3
.00131062
8
.00120773
3
.001 1 1982
8
00104384
9
.00143061
4
.00130890
9
.00120627
4
00111857
9
.00104275
700
.00142857
5
.00130719
830
.00120482
5
.00111732
960
.00104167
1
.00142653
6
.00130548
1
.00120337
6
.00111607
1
.00104058
2
.00142450
7
00130378
2
.00120192
7
.001 1 1483
2
.00103950
3
.00142247
8
.00130208
3
.00120048
8
.00111359
3
.00103842
4
.00142045
9
.00130039
4
.00119904
9
.00111235
4
.00103734
3
.00141844
770
.00129870
5
.001 19760
900
.00111111
5
.00103627
00
MATHEMATICAL TABLES.
No.
Recipro-
cal.
No.
Recipro-
cal.
No.
Recipro-
cal.
No.
Recipro-
No.
Recipro-
cal.
.000815661
966
.00103520
1031
.000969932
10%
.000912409
1161
.000861326
1226
7
.00103413
2
.000968992
7
.000911577
2
.000860585
7
.0008149%
8
.00103306
3
.000968054
8
.000910747
3
.000859845
8
.000814332
9
.00103199
4
.000967118
9
.000909918
4
.000859106
9
.000813670
970
.00103093
5
.000966184
1100
.000909091
5
.000858369
1230
.000813008
I
.00102987
6
.000965251
1
.000908265
6
.000857633
1
.000812348
2
.00102881
7
.000964320
2
000907441
7
.000856898
2
.000811688
3
.00102775
8
.000963391
3
.000906618
8
.000856164
3
.000811030
4
.00102669
9
.000962464
4
.000905797
9
.000855432
4
.000810373
5
.00102564
1040
000% 1538
5
.000904977
1170
.000854701
5
.000809717
6
.00102459
1
.000960615
6
.000904159
1
.000853971
6
.000809061
7
.00102354
2
.000959693
7
.000903342
2
.000853242
7
.000808407
8
.00102250
3
.000958774
8
.000902527
3
.000852515
8
.000807754
9
.00102145
4
.000957854
9
.000901713
4
.000851789
9
.000807102
980
.00102041
5
.000956938
1110
.000900901
5
.000851064
1240
.000806452
1
.00101937
6
.000956023
1 1
.000900090
6
.000850340
1
.000805802
2
.00101833
7
.000955110
12
.000899281
7
.00084% 18
2
.000805153
3
.00101729
8
.000954198
13
.000898473
8
.0008488%
3
.000804505
4
.00101626
9
.000953289
14
.000897666
9
.000848176
4
.000803858
5
.00101523
1050
.000952381
15
0008%861
1180
.000847457
5
.000803213
6
.00101420
1
.000951475
16
.0008%057
1
.000846740
6
.000802568
7
.00101317
2
.000950570
17
.000895255
2
.000846024
7
.000801925
8
.00101215
3
.000949668
18
.000894454
3
000845308
8
.000801282
9
.00101112
4
.000948767
191.000893655
4
.000844595
9
.000800640
990
.00101010
5
.000947867
1120
000892857
5
.000843882
1250
.000800000
1
.00100908
6
.000946970
1
.000892061
6
.000843170
1
.000799360
2
.00100806
7
.000946074
2
.000891266
7
.000842460
2
.000798722
3
.00100705
8
.000945180
3
.000890472
8
.000841751
3
.000798085
4
.00100604
9
.000944287
4
.00088%80
9
.000841043
4
.000797448
5
.00100502
1060
.0009433%
5
.000888889
1190
.000840336
5
.0007%813
6
.00100402
1
.000942507
6
.000888099
1
00083%31
6
.0007% 178
7
.00100301
2
.000941620
7
.000887311
2
.000838926
7
.000795545
8
.00100200
3
.000940734
8
.000886525
3
.000838222
8
.000794913
9
.00100100
4
.000939850
9
.000885740
4
.000837521
9
.000794281
1000
.00100000
5
.000938%7
1130
.000884956
5
.000836820
1260
.000793651
1
.000999001
6
000938086
1
.000884173
6
.000836120
1
.000793021
2
.000998004
7
.000937207
2
.000883392
7
.000835422
2
.000792393
3
.000997009
8
.000936330
3
.000882612
8
.000834724
3
.000791766
4
.000996016
9
.000935454
4
.000881834
9
.000834028
4
000791139
5
.000995025
1070
.000934579
5
.000881057
1200
.000833333
5
.000790514
6.
.000994036
1
.000933707
6
000880282
]
000832639
6
.000789889
7
.000993049
2
.000932836
7
.000879508
2
.000831947
7
.000789266
8
.000992063
3
.00093 1%6
8
.000878735
3
.000831255
8
.000788643
9
.000991080
4
000931099
9
.000877%3
4
.000830565
9
000788022
1010
.000990099
5
.000930233
1140
.000877193
5
.000829875
1270
.000787402
11
.000989120
6
.000929368
1
000876424
6
000829187
1 000786782
12
.000988142
7
.000928505
2
.000875657
7
.000828500
21.000786163
13
.000987167
8
.000927644
3
.000874891
8
.000827815
3|.000785546
14
.000986193
9
000926784
4
.000874126
9
.000827130
4
000784929
15
.000985222
1080
.000925926
5
.000873362
1210
.000826446
5
000784314
16
.000984252
1
000925069
6
000872600
11 .000825764
6
.UUU/tf>699
17
.000983284
2
.000924214
7
.000871840
12 .000825082
7
.000783085
18
.000982318
3
.000923361
8
.000871080
13 000824402
8
000782473
19
.000981354
4
.000922509
9
.000870322
14
000823723
9
.000781861
1020
.000980392
5
.000921659
1150
.000869565
15
.000823045
1280
000781250
1
.000979432
6
000920810
1
000868810
161.000822368
1
.000780640
2
.000978474
7
.0009 19%3
2
.000868056
17
.000821693
2
.000780031
3
.000977517
8
.000919118
3
.000867303
18
.000821018
3
.000779423
4
.000976562
9
.000918274
4
.000866551
19
.000820344
4
.000778816
5
.000975610
1090
.000917431
5
.000865801
1220
.0008 1%72
5
.000778210
6
.000974659
1
.000916590
6
.000865052
1
.000819001
6
.000777605
7
.000973710
2
.00091575
7
.000864304
2
.000818331
7
.000777001
8
.000972763
3
.000914913
8
.000863558
3
.000817661
8
.000776397
9
.000971817
4
.00091407:
9
.000862813
4
000816993
9
.000775795
1030
.000970874
5
.000913242
1160
.000862069
5
.000816326
1290
.000775194
RECIPROCALS OP NUMBERS.
91
No.
Recipro-
cal.
No.
Recipro-
cal.
No.
Recipro-
No.
Recipro-
No.
Recipro*
cal.
1291
.000774593
1356
.000737463
1421
.000703730
i486
.000672948
1551
.000644745
2
.000773994
7
.000736920
2
.000703235
7
.000672495
2
.000644330
3
.000773395
8
.000736377
3
.000702741
8
.000672043
?
.000643915
4
.000772797
9
.000735835
4
.000702247
g
.000671592
t
.000643501
5
.000772201
1360
.000735294
5
.000701754
1490
.000671141
c
.000643087
6
.000771605
1
.000734754
6
.000701262
1
.000670691
\
.000642673
7
.000771010
2
.000734214
7
.000700771
2
.000670241
7
.000642261
8
.000770416
3
.000733676
8
.000700280
3
.000669792
8
.000641848
9
.000769823
4
.000733138
9
.000699790
4
.000669344
9
.000641437
1300
.000769231
5
.000732601
1430
.000699301
5
.0006688%
1560
.000641026
1
.000768639
6
.000732064
1
.000698812
6
.000668449
.000640615
2
.000768049
7
.000731529
2
.000698324
7
.000668003
2
.000640205
3
.000767459
8
.000730994
3
.000697837
8
.000667557
g
.000639795
4
.000766871
9
.000730460
4
.000697350
9
.000667111
^
.000639386
5
.000766283
1370
.000729927
5
.000696864
1500
.000666667
•
.000638978
6
.000765697
1
.000729395
6
000696379
1
.000666223
t
.000638570
7
.000765111
2
.000728863
7
000695894
2
.000665779
7
.000638162
8
.000764526
3
.000728332
8
000695410
3
.000665336
8
.000637755
9
.000763942
4
.000727802
9
000694927
4
.000664894
9
.000637349
1310
.000763359
5
.000727273
1440
000694444
5
.000664452
1570
.000636943
11
.000762776
6
.000726744
1
000693962
6
.000664011
1
.000636537
12
.000762195
7
.000726216
2
000693481
7
.000663570
2
.000636132
13
.000761615
8
.000725689
3
000693001
8
.000663130
3
.000635728
14
.000761035
9
.000725163
4
000692521
9
.000662691
4
.000635324
15
.000760456
1380
.000724638
5
000692041
1510
000662252
5
.000634921
16
.000759878
1
.000724113
6
000691563
11
000661813
6
.000634518
17
.000759301
2
.000723589
7
000691085
12
000661376
7
.000634115
18
.000758725
3
.000723066
8
000690608
13
000660939
8
.000633714
19
.000758150
4
.000722543
9
000690131
14
000660502
9
.000633312
1320
.000757576
5
.000722022
1450
000689655
15
000660066
580
.000632911
.000757002
6
.000721501
1
000689180
16
00065%31
.000632511
2
.000756430
7
.000720980
2
000688705
17
0006591%
2
.000632111
3
.000755858
8
.000720461
3
000688231
18
000658761
3
000631712
4
.000755287
9
.000719942
4
000687758
19
000658328
4
.000631313
5
.000754717
1390
.000719424
5
000687285
1520
000657895
5
000630915
6
.000754148
1
.000718907
6
000686813
1
000657462
6
000630517
7
.000753579
2
.000718391
7
000686341
2
000657030
7
C00630I20
8
.000753012
3
.000717875
8
000685871
3
000656598
8
000629723
9
.000752445
4
.000717360
9l 000685401
4
000656168
9
000629327
1330
.000751880
5
.000716846
1460
.000684932
5
000655738
590
000628931
1
.000751315
6
000716332
1
000684463
6
000655308
1
000628536
2
.000750750
7
.000715820
2
.000683994
7
000654879
2
000628141
3
.000750187
8
000715308
3
.000683527
8
000654450
3
000627746
4
.000749625
9
.0007147%
4
.000683060
9
000654022
4
000627353
5
.000749064
1400
.000714286
5
000682594
1530
000653595
5
000626959
6
.000748503
1
.000713776
6
.000682128
1
000653168
6
000626566
7
.000747943
2
.000713267
7
.000681663
2
000652742
7
000626174
8
.000747384
3
.000712758
8
.000681199
3
000652316
8
000625782
9
.000746826
4
.000712251
9
.000680735
4
000651890
9
000625391
1340
.000746269
5
.000711744
1470
.000680272
5
000651466
600
000625000
1
.000745712
6
.000711238
1
.000679810
6
000651042
2
000624219
2
.000745156
7
.000710732
2
.000679348
7
000650618
4
000623441
3
.000744602
8
.000710227
3
000678887
8
000650195
6
000622665
4
.000744048
9
.000709723
4
.000678426
9
000649773
8
000621890
5
.000743494
1410
.000709220
5
000677966
1540
000649351
610
000621 1 18
6
.000742942
11
.000708717
6
.000677507
1
000648929
12
000620347
7
.000742390
12
.000708215
7
.000677048
2
000648508
14
000619578
8
.000741840
13
.000707714
8
.000676590
3
000648088
16
000618812
9
.000741290
14
.000707214
9
.000676132
4
000647668
18
000618047
1350
.000740741
15
.000706714
1480
.000675676
5
000647249
620
000617284
1
.000740192
16
.000706215
1
.000675219
6
000646830
2
000616523
2
.000739645
17
.000705716
2
.000674764
7
000646412
A
000615763
3
.000739098
18
.000705219
3
.000674309
8
000645995
6
000615006
4
.000738552
19 000704722
4
.000673854
9
000645578
8
000614250
5
.000738007
1 420 1. 000704225
5
.000673401
1550
.000645161
630
000613497
MATHEMATICAL TABLES.
No.
"1632
Recipro-
cal*
No.
Recipro-
cal.
No.
Recipro-
cal.
No.
Recipro-
cal.
No.
Recipro-
cal.
.000612745
1706
.000586166
1780
.000561798
1854
.000539374
1928
.000518672
4
.00061 1995
8
.000585480
2
000561167
6
.000538793
1930
.000518135
6
.00061 1247
1710
.000584795
4
.000560538
8
.000538213
2
.000517599
8
.000610500
12
.0005841 12
6
.000559910
1860
.000537634
4
.000517063
1640
.000609756
14
.000583430
8
000559284
2
.000537057
6
.000516528
2
.000609013
16
.000582750
1790
.000558659
4
.000536480
8
.0005159%
4
.000608272
18
000582072
2
.000558035
6
.000535905
1940
.000515464
6
.000607533
1720
.000581395
4
.000557413
8
.000535332
2
.000514933
8
.0006067%
2
.000580720
6
.000556793
1870
.000534759
4
.000514403
1650
.000506061
4
.000580046
8
.000556174
2
.000534188
6
.000513874
2
.000605327
6
.000579374
1800
.000555556
4
.000533618
8
.000513347
4
.000604595
8
.000578704
'2
000554939
6
000533049
1950
.000512820
6
.000503865
1730
.000578035
4
.000554324
8
.000532481
2
.000512295
8
.000603136
2
.000577367
6
.000553710
1880
.000531915
4
.000511770
1660
.000602110
4
.000576701
8
.000553097
2
.000531350
6
.000511247
2
.000601585
6
.000576037
1810
.000552486
4
.000530785
8
.000510725
4
.000500962
8
.000575374
12
.000551876
6
.000530222
1960
.000510204
6
.000600240
1740
000574713
14
.000551268
8
000529661
2
.000509684
8
.000599520
2
.000574053
16
.000550661
1890
.000529100
4
.000509165
1670
.000598802
4
.000573394
18
.000550055
2
.000528541
6
.000508647
2
.000598086
6
.000572737
1820
.000549451
4
.000527983
8
.000508130
4
.000597371
8
.000572082
2
.000548848
6
.000527426
197C
.000507614
6
.000596658
1750
.000571429
4
.000548246
8
.000526870
2
.000507099
8
.000595947
2
.000570776
6
.000547645
1900
.000526316
4
.000506585
1680
.000595238
4
.000570125
8
.000547046
2
.000525762
6
.000506073
2
000594530
6
000569476
1830
000546448
4
000525210
8
.000505561
4
.000593824
8
.000568828
2
.000545851
6
.000524659
1980
.000505051
6
.000593120
1760
.000568182
4
.000545256
8
.000524109
2
.000504541
8
.000592417
2
.000567537
6
.000544662
1910
.000523560
4
.000504032
1690
.000591716
4
.000566893
8
.000544069
12
.000523012
6
.000503524
2
.000591017
6
.000566251
1840
000543478
14
.000522466
8
.000503018
4
.000590319
8
.00056561 1
2
.000542888
16
.000521920
1990
.000502513
6
.000589622
1770
.000564972
4
.000542299
18
.000521376
2
.000502008
8
.000588928
2
.000564334
6
.000541711
1920
.000520833
4
.000501504
1700
.000588235
4
.000563698
8
.000541125
2
.000520291
6
.000501002
2
.000587544
6
.000563063
1850
.000540540
4
.000519750
8
.000500501
4
.000586854
8
.000562430
2
.000539957
6
.000519211
2000
.000500000
Use of reciprocals. — Reciprocals may be conveniently used to facili-
tate computations in long division. Instead of dividing as usual, multiply
the dividend by the reciprocal of the divisor. The method is especially
useful when many different dividends are required to be divided by the
same divisor. In this case find the reciprocal of the divisor, and make a
small table of its multiples up to 9 times, and use this as a multiplication-
table instead of actually performing the multiplication in each case.
EXAMPLE. — 9871 and several other numbers are to be divided by 1638.
The reciprocal of 1638 is .000610500.
Multiples of the
reciprocal:
1.
2.
3.
4.
5.
6.
7.
8.
9.
10.
.0006105
.0012210
.0018315
.0024420
.0030525
.0036630
.0042735
.0048840
.0054945
.0061050
The table of multiples is made by continuous addi-
tion of 6105. The tenth line is written to check the
accuracy of the addition, but it is not afterwards used.
Operation. •
Dividend 9871
Take from table 1 0006105
7 0.042735
8 00.48840
9 005.4945
Quotient 6.0262455
Correct quotient by direct division 6.0262515
The result will generally be correct to as many figures as there are signi-
ficant figures in the reciprocal, less one, and the error of the next figure will
in general not exceed one. In the above example the reciprocal has six
significant figures, 610500, and the result is correct to five places of figures.
SQUARES, CUBES, SQUARE AND CUBE ROOTS. 03
SQUARES, CUBES, SQUARE BOOTS AND CUBE ROOTS OF
NUMBERS FROM 0.1 TO 1600.
No.
Square.
Cube.
Sq.
Root.
Cube
Root.
No.
Square.
Cube.
Sq.
Root.
Cube
Root.
0 1
.01
.001
.3162
.4642
3.1
9.61
29.791
.761
1.458'
.15
.0225
.0034
.3873
.5313
.2
10.24
32.768
.789
1.474
.2
.04
.008
.4472
.5848
.3
10.89
35.937
.817
1.489
.25
.0625
.0156
.500
.6300
.4
11.56
39.304
.844
1.504
.3
.09
.027
.5477
.6694
.5
12.25
42.875
.871
1.518
.35
.1225
.0429
.5916
.7047
.6
12.96
46.656
.897
1.533
.4
16
.064
.6325
.7368
.7
13.69
50.653
.924
1.547
.45
.2025
.0911
.6708
.7663
.8
14.44
54.872
.949
1.560
.5
.25
.125
.7071
.7937
.9
15.21
59.319
.975
1.574
.55
.3025
.1664
.7416
.8193
4.
16.
64.
2.
1.5874
.6
.36
. .216
.7746
.8434
.1
16.81
68.921
2.025
1.601
.65
.4225
.2746
.8062
.8662
.2
17.64
74.088
2.049
1.613
.7
.49
.343
.8367
.8879
.3
18.49
79.507
2.074
1.626
.75
.5625
.4219
.8660
.9086
.4
19.36
85..184
2.098
1.639
.8
.64
.512
.8944
.9283
.5
20.25
91.125
2.121
1.651
.85
.7225
.6141
.9219
.9473
.6
21.16
97.336
2.145
1.663
.9
.81
.729
.9487
.9655
.7
22.09
103.823
2.168
1.675
.95
.9025
.8574
.9747
.9830
.8
23.04
110.592
2.191
1.687
1.
1.
.9
24.01
1 1 7.649
2.214
1.698
1.05
'.1025
J58
!025
1.016
5.
25.
125.
2.2361
1.7100
j
.21
.331
.049
1.032
.1
26.01
132.651
2.258
1.721
J5
.3225
.521
.072
1.048
.2
27.04
140.608
2.280
1.732
.2
.44
728
.095
1.063
.3
28.09
148.877
2.302
1.744
.25
• .5625
.953
.118
1.077
.4
29.16
157.464
2.324
1.754
.3
.69
2.197
.140
1.091
.5
30.25
166.375
2.345
1.765
.35
.8225
2.460
.162
1.105
.6
31.36
175.616
2.366
1.776
.4
.96
2.744
.183
1.119
.7
32.49
185.193
2.387
1.786
.45
2.1025
3.049
.204
1.132
.8
33.64
195.112
2.408
1.797
.5
2.25
3.375
.2247
1.1447
.9
34.81
205.379
2.429
1.807
.55
2.4025
3.724
.245
1.157
6.
36.
216.
2.4495
1.8171
.6
2.56
4.096
.265
1.170
.1
37.21
226.981
2.470
1.827
.65
2.7225
4.492
.285
K182
.2
38.44
238.328
2.490
1.837
.7
2.89
4.913
.304
1.193
.3
39.69
250.047
2.510
1.847
.75
3.0625
5.359
.323
1.205
.4
40.96
262.144
2.530
1.857
.8
3.24
5.832
.342
1.216
.5
42.25
274.625
2.550
1.866
1.85
3.4225
6.332
.360
1.228
.6
43.56
287.496
2.569
1.876
1.9
3.61
6.859
.378
1.239
.7
44.89
300.763
2.588
1.885
1.95
3.8025
7.415
.396
1.249
.8
46.24
314.432
2.608
1.895
2.
4.
8.
.4142
1 .2599
.9
47.61
328.509
2.627
1.904
.1
4.41
9.261
.449
1.281
7.
49.
343*.
2.6458
1.9129
.2
4.84
10.648
.483
1.301
j
50.41
357.911
2.665
1.922
.3
5.29
12.167
.517
1.320
\2
51.84
373.248
2.683
1.931
.4
5.76
13.824
.549
1.339
.3
53.29
389.017
2.702
1.940
.5
6.25
15.625
.581
1.357
.4
54.76
405.224
2.720
1.949
.6
6.76
17.576
.612
1.375
.5
56.25
421.875
2.739
1.957
.7
7.29
19.683
.643
1.392
.6
57.76
438.976
2.757
1.966
.8
7.84
21.952
.673
1.409
.7
59.29
456.533
2.775
1.975
.9
8.41
24.389
.703
1.426
.8
60.84
474.552
2.793
1.983
3.
•
9.
27.
.7321
1 .4422
.9
62.41
493.039
2.811
1.992
94
MATHEMATICAL TABLES.
No.
Square
Cube.
Sq.
Root.
Cube
Root.
No.
Square
Cube.
Sq.
Root.
Cube
Root,
sT~
64.
512.
2.8284
2.
45
2025
91123
6.7082
3.5569
65.61
531.441
2.846
2.008
46
2116
97336
6.7823
3.5830
\2
67.24
551.368
2.864
2.017
47
2209
103823
6.8557
3.6088
.3
68.89
571.787
2.881
2.025
48
2304
110592
6.9282
3.6342
.4
70.56
592.704
2.898
2.033
49
2401
1 1 7649
7.
3.6593
.5
72.25
614.125
2.915
2.041
50
2500
125000
7.0711
3.6840
.6
73.96
636.056
2.933
2.049
51
2601
132651
7.1414
3.7084
.7
75.69
658.503
2.950
2.057
52
2704
140608
7.2111
3.7325
.8
77.44
681.472
2.966
2.065
53
2809
148877
7.2801
3.7563
.9
79.21
704.969
2.983
2.072
54
2916
] 57 464
7.3485
3.7798
9.
81.
729.
3.
2.0801
55
3025
166375
7.4162
3.8030
.1
82.81
753.571
3.017
2.088
56
3136
175616
7.4833
3.8259
.2
84.64
778.688
3.033
2.095
57
3249
185193
7.5498
3.8485
.3
86.49
804.357
3.050
2.103
58
3364
195112
7.6158
3.8709
.4
88.36
830.584
3.066
2.110
59
3481
205379
7.6811
3.8930
.5
90.25
857.375
3.082
2.118
60
3600
216000
7.7460
3.9149
.6
92.16
884.736
3.098
2.125
61
3721
226981
7.8102
3.9365
.7
94.09
912.673
3.114
2.133
62
3844
238328
7.8740
3.9579
.8
96.04
941.192
3.130
2.140
63
3969
250047
7.9373
3.9791
.9
98.01
970.299
3.146
2.147
64
4096
262144
8.
4.
10
100
1000
3.1623
2.1544
65
4225
274625
8.0623
4.0207
11
121
1331
3.3166
2.2240
66
4356
287496
8.1240
4.0412
12
144
1728
3.4641
2.2894
67
4489
300763
8.1854
4.0615
13
169
2197
3.6056
2.3513
68
4624
314432
8.2462
4.0817
14
196
2744
3.7417
2.4101
69
4761
328509
8.3066
4.1016
15
225
3375
3.8730
2.4662
70
4900
343000
8.3666
4.1213
16
256
4096
4.
2.5198
71
5041
357911
8.4261
4.1408
17
289
4913
4.1231
2.5713
72
5184
373248
8.4853
4.1602
18
324
5832
4.2426
2.6207
73
5329
389017
8.5440
4.1793
19
361
6859
4.3589
2.6684
74
5476
405224
8.6023
4.1983
20
400
8000
4.4721
2.7144
75
5625
421875
8.6603
4.2172
21
441
9261
4.5826
2.7589
76
5776
438976
8.7178
4.2358
22
484
10648
4.6904
2.8020
77
5929
456533
8.7750
4.2543
23
529
12167
4.7958
2.8439
78
6084
474552
8.8318
4.2727
24
576
13824
4.8990
2.8845
79
6241
493039
8.8882
4.2908
25
625
15625
5.
2.9240
80
6400
5.12000
8.9443
4.3089
26
676
17576
5.0990
2.9625
81
6561
531441
9.
4.3267
27
729
19683
5.1962
3.
82
6724
551368
9.0554
4.3445
28
784
21952
5.2915
3.0366
83
6889
571787
9.1104
4.3621
29
841
24389
5.3852
3.0723
84
7056
592704
9.1652
4.3795
30
900
27000
5.4772
3.1072
85
7225
614125
9.2195
4.3968
31
961
29791
5.5678
3.1414
86
7396
636056
9.2736
4.4140
32
024
32768
5.6569
3.1748
87
7569
658503
9.3276
4.4310
33
089
35937
5.74^6
3.2075
88
7744
681472
9.3808
4.4480
34
156
39304'
5.8310
3.2396
89
7921
704969
9.4340
4.4647
35
225
42875
5.9161
3.2711
90
8100
729000
9.4868
4.4814
36
296
46656
6.
3.3019
91
8281
753571
9.5394
4.4979
37
369
50653
6.0828
3.3322
92
8464
778688
9.5917
4.5144
38
444
54872
6.1644
3.3620
93
8649
804357
9.6437
4.5307
39
521
59319
6.2450
3.3912
94
8836
830584
9.6954
4.5468
40
600
64000
6.3246
3.4200
95
9025
857375
9.7468
4.5629
41
681
68921
64031
3.4482
96
9216
884736
9.7980
4.5789
42
764
74088
6.4807
3.4760
97
9409
912673
98489
4.5947
43
849
79507
6.5574
3.5034
98
9604
941 192
9.8995
4.6104
44
936
85184
6.6332
3.5303
99
9801
970299j
9.9499
4.6261
SQUARES, CUBES, SQUARE AND CUBE ROOTS. 95
No.
Sq.
Cube
Sq.
Root.
Cube
Root.
No.
Square.
Cube..
Sq.
Root.
Cube
Root.
Too"
10000
1000000
10.
4.6416
155
24025
3723875
12.4499
5.3717
101
10201
1030301
10.0499
4.6570
156
24336
3796416
12.4900
5.3832
102
10404
1061208
10.0995
4.6723
157
24649
3869893
12.5300
5.3947
103
10609
1092727
10.1489
4.6875
158
24964
3944312
12.5698
5 4061
104
10816
1124864
10.1980
4.7027
159
25281
4019679
12.6095
5.4175
105
11025
1157625
10.2470
4.7177
160
25600
4096000
12.6491
5.4288
106
11236
1191016
10.2956
4.7326
161
25921
4173281
12.6886
5.4401
107
11449
1225043
10.3441
4.7475
162
26244
425 1 528
12.7279
5.4514
10S
11664
1259712
10.3923
4.7622
163
26569
4330747
12.7671
5.^26
109
11881
1295029
10.4403
4.7769
164
26896
4410944
12.8062
5.W37
110
12100
1331000
10.4881
4.7914
165
27225
4492125
12.8452
5.4848
1 1 1
12321
1367631
10.5357
4.8059
166
27556
4574296
12.8841
5.4959
112
12544
1404928
10.5830
4.8203
167
27889
4657463
12.9228
5.5069
113
12769
1442897
10.6301
4.8346
168
28224
4741632
12.9615
5.5178
114
12996
1481544
10.6771
4.8488
169
28561
4826809
13.0000
5.5288
115
13225
1 520875
10.7238
4.8629
170
28900
4913000
13.0384
5.5397
116
13456
1560896
10.7703
4.8770
171
29241
5000211
13.0767
5.5505
117
13689
1601613
10.8167
4.8910
172
29584
5088448
13.1149
5.5613
118
13924
1643032
10.8628
4.9049
173
29929
5177717
13.1529
5.5721
119
14161
1685159
10.9087
4.9187
174
30276
5268024
13.1909
5.5828
120
14400
1728000
10.9545
4.9324
175
30625
5359375
13.2288
5.5934
121
14641
1771561
1 1 .0000
4.9461
176
30976
5451776
13.2665
5.6041
122
14884
1815848
1 1 .0454
4.9597
177
31329
5545233
13.3041
5.6147
123
15129
1860867
1 1 .0905
4.9732
178
31684
5639752
13.3417
5.6252
124
15376
1906624
11.1355
4.9866
179
32041
5735339
13.3791
5.6357
125
15625
1953125
11.1803
5.0000
180
32400
5832000
13.4164
5.6462
126
15876
2000376
11.2250
5.0133
181
32761
5929741
13.4536
5.6567
127
16129
2048383
1 1 .2694
5.0265
182
33124
6028568
13.4907
5.6671
12S
16384
2097152
11.313"
5.0397
183
33489
6128487
13.5277
5.6774
129
16641
2146689
11.3578
5.0528
184
33856
6229504
13.5647
5.6873
130
16900
2197000
11.4018
5.0658
185
34225
6331625
13.6015
5.6980
131
17161
2248091
11.4455
5.0788
186
34596
6434856
13.6382
5.7083
132
17424
2299963
11.4891
5.0916
187
34969
6539203
13.6748
5.7185
133
17689
2352637
11.5326
5.1045
188
35344
6644672
13.7113
5.7287
134
17956
2406104
11.5758
5.1172
189
35721
6751269
13.7477
5.7388
135
18225
2460375
11.6190
5.1299
190
36100
6859000
13.7840
5.7489
136
18496
2515456
11.6619
5.1426
191
36481
6967871
13.8203
5.7590
137
18769
2571353
11.7047
5.1551
192
36864
7077888
13.8564
5.7690
138
19044
2628072
11.7473
5.1676
193
37249
7189057
13.8924
5.7790
139
19321
2685619
11.7898
5.1801
194
37636
7301384
13.9284
5.7890
140
19600
2744000
11.8322
5.1925
195
38025
7414875
13.9642
5.7989
141
19331
2803221
11.8743
5.2048
196
38416
7529536
14.0000
5.8088
142
20164
2863288
11.9164
5.2171
1.97
38809
7645373
14.0357
5.8186
143
20449
2924207
1 1 .9583
'5.2293
198
39204
7762392
14.0712
5.8285
144
20736
2985984
12.0000
5.2415
199
39601
7880599
14.1067
5.8383
145
21025
3048625
120416
5.2536
200
40000
8000000
14.1421
5.8480
146
21316
3112136
12.0830
5.2656
201
40401
8120601
14.1774
5.8578
147
21609
3176523
12.1244
5.2776
202
40804
8242408
14.2127
5.8675
148
21904
3241792
12 1655
5.2896
203
41209
8365427
14.2478
5.8771
149
22201
3307949
12.2066
5.3015
204
41616
8489664
14.2829
5.8868
150
22500
3375000
12.2474
5.3133
205
42025
8615125
14.3178
5.8964
151
22801
344295 1
12.2882
5.3251
206
42436
8741816
14.3527
5.9059
152
23104
3511808
12.3288
5.3368
207
42849
8869743
14.3875
5.9155
153
23409
3581577
12.3693
5.3485
208
43264
8998912
14.4222
5.9250
154 23716
3652264
12.4097
5.3601
209
43681
9129329
14.4568
5.9345
96
MATHEMATICAL TABLES.
No.
Sq.
Cube.
Root.
Cube
Root.
No.
Square.
Cube.
Sq.
Root.
Cube
Root.
2H)"
44100
9261000
14.4914
5.9439
265
70225
18609625
16.2788
6.4232
211
44521
939393 1
14.5258
5.9533
266
70756
18821096
16.3095
6.4312
212
44944
9528128
14.5602
5.9627
267
71289
19034163
16.3401
6.4393
213
45369
9663597
14.5945
5.9721
268
71824
19248832
16.3707
6.4473
214
45796
9800344
14.6287
5.9814
269
72361
19465109
16.4012
6.4553
215
46225
9938375
14.6629
5.9907
270
72900
19683000
16.4317
6.4633
216
46656
10077696
14.6969
6.0000
271
73441
19902511
16.4621
6.4713_
217
47089
1 02 1 83 1 3
14.7309
6.0092
272
73984
20123648
16.4924
6.4792
21S
47524
10360232
14.7648
6.0185
273
74529
20346417
16.5227
6.4872
1
47961
10503459
14.7986
6.0277
274
75076
20570824
16.5529
6.4951
220
48400
10648000
14.8324
6.0368
275
75625
20796875
16.5831
6.5030
221
48841
10793861
14.8661
6.0459
276
76176
21024576
16.6132
6.5108
222
49284
1 094 1 048
14.8997
6.0550
277
76729
21253933
16.6433
6.5187
223
49729
11089567
14.9332
6.0641
278
77284
21484952
16.6733
6.5265
224
50176
11239424
14.9666
6.0732
279
77841
21717639
16.7033
6.5343
225
50625
11390625
15.0000
6.0822
280
78400
21952000
16.7332
6.5421
226
51076
11543176
15.0333
6.0912
281
78961
22188041
16.7631
6.5499
227
51529
11697083
15.0665
6.1002
282
79524
22425768
16.7929
6.5577
228
51984
11852352
15.0997
6.1091
283
80089
22665187
16.8226
6.5654
229
52441
12008989
15.1327
6.1180
284
80656
22906304
16.8523
6.5731
230
52900
12167000
15.1658
6.1269
285
81225
23149125
16.8819
6.5808
231
53361
12326391
15.1987
6.1358
286
81796
23393656
16.9115
6.5885
232
53824
12487168
15.2315
6. 1 446
287
82369
23639903
16.9411
6.5962
233
54289
12649337
15.2643
6.1534
288
82944
23887872
16.9706
6.6039
234
54756
12812904
15.2971
6.1622
289
83521
24137569
17.0000
6.6115
235
55225
12977875
15.3297
6.1710
290
84100
24389000
17.0294
6.6191
236
55696
13144256
15.3623
6.1797
291
84681
24642171
17.0587
6.6267
237
56169
13312053
153948
6.1885
292
85264
24897088
17.0880
6.6343
238
56644
13481272
15.4272
6.1972
293
85849
25153757
17.1172
6.6419
239
57121
13651919
15.4596
6.2058
294
86436
25412184
17.1464
6.6494
240
57600
13824000
15.4919
6.2145
295
87025
25672375
17.1756
6.6569
241
58081
13997521
15.5242
6.223 1
296
87616
25934336
17.2047
6.6644
242
58564
14172488
15.5563
6.2317
297
88209
26198073
17.2337
6.6719
243
59049
14348907
15.5885
6.2403
298
88804
26463592
17.2627
6.6794
244
59536
14526784
15.6205
6.2488
299
89401
26730899
17.2916
6.6869
245
60025
14706125
15.6525
6.2573
300
90000
27000000
17.3205
6.6943
246
60516
14886936
15.6844
6.2658
301
90601
27270901
17.3494
6.7018
247
61009
1 5069223
15.7162
6.2743
302
91204
27543608
17.3781
6.7092
248
61504
15252992
15.7480
6.2828
303
91809
27818127
17.4069
6.7166
249
62001
15438249
15.7797
6.2912
304
92416
28094464
17.4356
6.7240
250
62500
1 5625000
15.8114
6.2996
305
93025
28372625
1 7.4642
6.7313
251
63001
15813251
15.8430
6.3080
306
93636
28652616
17.4929
6.7387
252
63504
16003008
15.8745
6.3164
307
94249
28934443
17.5214
6.7460
253
64009
16194277
15.9060
6.3247
308
• 94864
29218112
17.5499
6.7533
254
64516
16387064
15.9374
6.3330
309
95481
29503629
17.5784
6.7606
255
65025
16581375
15.9687
6.3413
310
96100
29791000
1 7.6068
6.7679
256
65536
16777216
16.0000
6.3496
311
96721
3008023 1
17.6352
6.7752
257
66049
16974593
16.0312
6,3579
312
97344
30371328
17.6635
6.7824
258
66564
17173512
16.0624
6.3661
313
97969
30664297
17.6918
6.7897
259
67081
17373979
16.0935
6.3743
314
98596
30959144
17.7200
6.7969
260
67600
17576000
16.1245
6.3825
315
99225
31255875
17.7482
6.8041
261
68121
17779581
16.1555
63907
316
99856
31554496
17.7764
6.8113
262
68644
1 7984728
16.1864
6.3988
317
100489
31855013
17.8045
6.8185
263
69169
18191447
16.2173
6.4070
318
101124
32157432
17.8326
6.8256
264
69696
18399744 16.2481
6.4151
319
101761
32461759
17.8606
6.8328
SQUARES, CUBES, SQUARE AND CUBE ROOTS. 97
No.
Square.
Cube.
Sq.
Root.
Cube
Root.
No.
Square
Cube.
Sq.
Root.
Cube
Root.
320
102400
32768000
17.8885
6.8399
375
1 40625
52734375
19.3649
7.2112
321
103041
33076161
17.9165
6.8470
376
141376
53157376
19.3907
7.2177
322
1 03684
33386248
17.9444
6.8541
377
142129
53582633
19.4165
7.2240
323
104329
33698267
17.9722
6.8612
378
1 42884
54010152
1 9.4422
7.2304
324
104976
34012224
18.0000
6.8683
379
143641
54439939
19.4679
7.2368
325
105625
34328125
18.0278
6.8753
380
1 44400
54872000
1 9.4936
7.2432
326
106276
34645976
18.0555
6.8824
381
145161
55306341
19.5192
72495
327
106929
34965783
18.0831
6.8894
382
145924
55742968
19.5448
7.2558
328
107584
35287552
18.1108
6.8964
383
1 46689
56181887
19.5704
7.2622
329
108241
35611289
18.1384
6.9034
384
147456
56623104
19.5959
7.2685
330
108900
35937000
18.1659
6.9104
385
148225
57066625
19.6214
7.2748
331
109561
36264691
18.1934
6.9174
386
1 48996
57512456
19.6469
7.2811
332
110224
36594368
18.2209
6.9244
387
149769
57960603
19.6723
7.2874
333
110889
36926037
18.2483
6.9313
388
150544
58411072
19.6977
7.2936
334
111556
37259704
18.2757
6.9382
389
151321
58863869
19.7231
7.2999
335
112225
37595375
18.3030
6.9451
390
152100
59319000
19.7484
7.306!
336
1 1 2896
37933056
18.3303
6.9521
391
152881
59776471
19.7737
7.3124
337
113569
38272753
183576
6.9589
392
153664
60236288
19.7990
7.3186
338
114244
38614472
18.3848
6.9658
393
1 54449
60698457
1 9.8242
7.3248
339
114921
38958219
18.4120
6.9727
394
155236
61162984
1 9.8494
7.3310
340
1 1 5600
39304000
18.4391
6.9795
395
156025
61629875
19.8746
7.3372
341
116281
39651821
18.4662
6.9864
396
156816
62099136
1 9.8997
7.3434
342
116964
40001688
18.4932
6.9932
397
157609
62570773
19.9249
7.3496
343
1 1 7649
40353607
18.521)3
7.0000
398
1 58404
63044792
19.9499
7.35*8
344
118336
40707584
18.5472
7.0068
399
159201
63521199
19.9750
7.361$
345
119025
41063625
18.5742
7.0136
400
1 60000
64000000
20.0000
7.3681
346
119716
41421736
18.6011 7.0203
401
160801
64481201
20.0250
7.3742
347
120409
41781923
18.62797.0271
402
161604
64964808
20.0499
7.3803
348
121104
42144192
18.6548
7.0338
403
162409
65450827
20.0749
7.3864
349
121801
42508549
18.6815
7.0406
404
163216
65939264
20.0998
7.3925
350
122500
42875000
18.7083
7.0473
405
164025
66430125
20.1246
7.3986
351
123201
43243551
18.7350
7.0540
406
164836
66923416
20.1494
7.4047
352
123904
43614208
18.7617
7.0607
407
165649
67419143
20.1742
7.4108
353
124609
43986977
18.7883
7.0674
408
166464
67917312
20.1990
7.4169
354
125316
44361864
18.8149
7.0740
409
167281
68417929
20.2237
7.4229
355
126025
44738875
18.8414
7.0807
410
168100
68921 COO
202485
7.4290
356
126736
45118016
18.8680
7.0873
411
168921
69426531
20.2731
7.4350
357
127449
45499293
18.8944
7.0940
412
1 697 44
69934528
20.2978
7.4410
358
128164
45882712
18.9209
7.1006
413
170569
70444997
20.3224
7.4470
359
128881
46268279
18.9473
7.1072
414
171396
70957944
20.3470
7.4530
360
129600
46656000
189737
7.1138
415
172225
71473375
20.3715
7.4590
361
130321
47045881
19.0000
7.1204
416
173056
71991296
20.3961
7.4650
362
131044
47437928
19.0263
7.1269
417
1 73889
72511713
20.4206
7.4710
363
131769
47832147
19.0526
7.1335
418
1 74724
73034632
20.4450
7.4770
364
132496
48228544
19.0788
7.1400
419
175561
73560059
20.4695
7.4829
365
133225
48627125
19.1050
7.1466
420
1 76400
74088000
20.4939
74889
366
133956
49027896
19.1311
7.1531
421
177241
74618461
20.5183
7.4948
367
134689
49430863
19.1572
7.1596
422
1 78084
75151448
20.5426
7.5007
368
135424
49836032
19.1833
7.1661
423
1 78929
75686967
20.5670
7.5067
369
136161
50243409
19.2094
7.1726
424
179776
76225024
20.5913
7.5126
370
1 36900
50653000
19.2354
7.1791
425
180625
76765625
20.6155
7.5185
371
137641
51064811
19.2614
7.1855
426
18M76
77308776
20 6398
7 5244
372
138384
51478848
19.2873
7.1920
427
182329
77854483
20.6640
7 5302
373
374
139129
139876
51895117 19313217 1984
52313624 19.3391 '7.2048
428
429
183184
184041
78402752
78953589
20.6882
20.7123
7.5361
7.5420
'98
MATHEMATICAL TABLES.
No.
Square
Cube.
Sq.
Root.
Cube
Root.
No.
Square
Cube.
Sq.
Root.
Cube
Root.
430
431
432
433
434
184900
185761
186624
187489
188356
79507000
80062991
80621568
81182737
81746504
20.7364
20.7605
20.7846
20.8087
20.8327
7.5478
7.5537
7.5595
7.5654
7.5712
485
486
487
488
489
235225
236196
237169
238144
239121
114084125
114791256
115501303
116214272
116930169
22.0227
22.0454
22.0681
22.0907
22.1133
7.8568
7.8622
7.8676
7.8730
7.8784
435
436
437
438
439
189225
190096
1 90969
191844
192721
82312875
82881856
83453453
84027672
846045 1 9
20.8567
20.8806
20.9045
20.9284
20.9523
7.5770
7.5828
7.5886
7.5944
76001
490
491
492
493
494
240100
241081
242064
243049
244036
1 1 7649000
118370771
119095488
119823157
120553784
22.1359
22.1585
22.1811
22.2036
22.2261
7.8837
7.8891
7.8944
7.8998
7.9051
440
441
442
443
444
193600
194481
195364
196249
197136
85184000
85766121
86350888
86938307
87528384
20.9762
21.0000
21.0238
21.0476
21.0713
7.6059
7.6117
7.6174
7.6232
7.6289
495
496
497
498
499
245025
246016
247009
248004
249001
121287375
122023936
122763473
123505992
124251499
22.2486
22.2711
22.2935
22.3159
22.3383
7.9105
7.9158
7.9211
7.9264
7.9317
445
446
447
448
449
198025
198916
199809
200704
201601
88121125
88716536
893 1 4623
89915392
90518849
21 0950
21.1187
21.1424
21.1660
21.1896
7.6346
7.6403
7.6460
7.6517
7.6574
500
501
502
503
504
250000
251001
252004
253009
254016
125000000
125751501
1 26506008
127263527
128024064
22.3607
22.3830
22.4054
22.4277
22.4499
7.9370
7.9423
7.9476
7.9528
7.9581
450
451
452
453
454
202500
203401
204304
205209
206116
91125000
91733851
92345408
92959677
93576664
21.2132
21.2368
21.2603
21.2838
21.3073
7.6631
7.6688
7.6744
7.6800
7.6857
505
506
507
508
509
255025
256036
257049
258064
259081
128787625
129554216
130323843
131096512
131872229
22.4722
22.4944
22.5167
22.5389
22.5610
7.9634
7.9686
79739
7.9791
7.9843
455
456
457
458
459
207025
207936
208849
209764
210681
94196375
94818816
95443993
96071912
96702579
21.3307
21.3542
21.3776
21.4009
21.4243
7.6914
7.6970
7.7026
7.7082
7.7138
510
511
512
513
514
260100
261121
262144
263169
264196
132651000
133432831
134217728
135005697
135796744
22.5832
22.6053
22.6274
22.6495
22.6716
7.9896
7.9948
8.0000
8.0052
8.0104
460
461
462
463
464
211600
212521
213444
214369
215296
97336000
97972181
98611128
99252847
99897344
21.4476
21.4709
21.4942
21.5174
21.5407
7.7194
7.7250
7.7306
7.7362
7.7418
515
516
517
518
519
265225
266256
267289
268324
269361
136590875
137388096
138188413
138991832
139798359
22 6936
22.7156
22.7376
22.7596
22.7816
8.0156
8.0208
8.0260
8.0311
8.0363
465
466
467
468
469
216225
217156
218089
219024
219961
100544625
101194696
101847563
102503232
103161709
21.5639
21.5870
21.6102
21.6333
21.6564
7.7473
7.7529
7.7584
7.7639
7.7695
520
521
522
523
524
270400
271441
272484
273529
274576
140608000
141420761
142236648
143055667
143877824
22.8035
22.8254
22.8473
22.8692
22.8910
8.0415
8.0466
8.0517
8.0569
8.0620
470
471
472
473
474
220900
221841
222784
223729
224676
103823000
104487111
105154048
105823817
106496424
21.6795
21.7025
21.7256
21.7486
21.7715
7.7750
7.7805
7.7860
7.7915
7.7970
525
526
527
528
529
275625
276676
277729
278784
279841
144703125
145531576
146363183
147197952
148035889
22.9129
22.9347
22.9565
22.9783
23.0000
8.0671
8.0723
8.0774
8.0825
8.0876
475
476
477
478
479
225625
226576
227529
228484
22944 1
107171875
107850176
108531333
109215352
109902239
21.7945
21.8174
21 8403
21.8632
21.8861
7.8025
7.8079
7.8134
7.8188
7.8243
530
531
532
533
534
280900
281961
283024
284089
285156
148877000
149721291
1 50568768
151419437
152273304
23.0217
23.0434
23.0651
23 0868
23.1084
80927
8.0978
8.1028
8.1079
8.1130
480
481
482
483
484
230400
231361
232324
233289
234256
110592000
111284641
111980168
112678587
1 13379904
21.9089
21.9317
21.9545
21.9773
22.0000
7.8297
7.8352
7.8406
7.8460
7.8514
535
536
537
538
539
286225
287296
288369
289444
290521
153130375
1 53990656
154854153
155720S72
156590819
23.1301
23.1517
23.1733
23.1948
23.2164
8.1180
8.123!
8.128!
8.1332
8.1332
SQUARES, CUBES, SQUARE AND CUBE ROOTS. 99
No.
Square.
Cube.
Sq.
Root.
Cube
Root.
No.
Square
Cube.
Sq.
Root.
Cube
Root.
540
541
542
543
544
291600
292681
293764
294849
295936
157464000
158340421
159220088
160103007
160989184
23.2379
23.2594
23.2809
23.3024
23.3238
8.1433
8.1483
8.1533
8.1583
8.1633
595
596
597
598
599
354025
355216
356409
357604
358801
210644875
211708736
212776173
213847192
214921799
24.3926
24.4131
24.4336
24.4540
24.4745
8.4108
8.4155
8.4202
8.4249
8.4296
545
546
547
548
549
297025
298116
299209
300304
301401
161878625
162771336
163667323
164566592
165469149
23.3452
23.3666
23.3880
23.4094
23.4307
8.1683
8.1733
8.1783
8.1833
8.1882
600
601
602
603
604
360000
361201
362404
363609
364816
216000000
217081801
218167208
219256227
220348864
24.4949
24.5153
24.5357
24.5561
24.5764
8.4343
8.4390
8.4437
8.4484
8.4530
550
551
552
553
554
302500
303601
304704
305809
306916
166375000
167284151
168196608
169112377
170031464
23.4521
23.4734
23.4947
23.5160
23.5372
8.1932
8.1982
8.2031
8.2081
8.2130
605
606
607
608
609
366025
367236
36S449
369664
370881
221445125
222545016
223648543
224755712
225866529
24.5967
24.6171
24.6374
24.6577
24.6779
8.4577
8.4623
8.4670
8.4716
8.4763
555
556
557
558
559
308025
309136
310249
311364
312481
170953875
171879616
1 72808693
173741112
174676879
23.5584
23.5797
23.6008
23.6220
23.6432
8.2180
8.2229
8.2278
8.2327
8.2377
610
611
612
613
614
372100
373321
374544
375769
376996
226981000
228099131
229220928
230346397
231475544
24.6982
24.7184
24.7386
24.7588
24.7790
8.4809
8.4856
8.4902
8.4948
8.4994
560
561
562
563
564
313600
314721
315844
316969
318096
175616000
176558481
177504328
178453547
179406144
23.6643
23.6854
23.7065
23.7276
23.7487
8.2426
8.2475
8.2524
8.2573
8.2621
615
616
617
618
619
378225
379456
380689
381924
383161
232608375
233744896
234885113
236029032
237176659
24.7992
24.8193
24.8395
24.8596
24.8797
8.5040
8.5C86
8.5132
8.5178
8.5224
565
566
567
568
569
319225
320356
321489
322624
323761
180362125
181321496
182284263
183250432
184220009
23.7697
23.7908
23.8118
23.8328
23.8537
8.2670
8.2719
8.2768
8.2816
8.2865
620
621
622
623
624
384400
385641
386884
388129
389376
238328000
239483061
240641848
241804367
242970624
24.8998
24.9199
24.9399
24.9600
24.9800
8.5270
8.5316
8.5362
8.5408
8.5453
570
571
572
573
574
324900
326041
327184
328329
329476
185193000
186169411
187149248
188132517
189119224
23.8747
23.8956
23.9165
23.9374
23.9583
8.2913
8.2962
8.3010
8.3059
8.3107
625
626
627
628
629
390625
391876
393129
394384
395641
244140625
245314376
246491883
247673152
248858189
25.0000
25.0200
25.0400
25.0599
25.0799
8.5499
8.5544
85590
8.5635
8.5681
575
576
577
578
579
330625
331776
332929
334084
335241
190109375
191102976
192100033
193100552
194104539
23.9792
24.0000
24.0208
24.0416
24.0624
8.3155
8.3203
8.3251
8.3300
8.3348
630
631
632
633
634
396900
398161
399424
400689
401956
250047000
251239591
252435968
253636137
254840104
25.0998
25.1197
25.1396
25.1595
25.1794
8.5726
8.5772
8.5817
8.5862
8.5907
580
581
582
583
584
336400
337561
338724
339889
341056
195112000
196122941
197137368
198155287
199176704
24.0832
24.1039
24.1247
24.1454
24.1661
8.3396
8.3443
8.3491
8.3539
8.3587
635
636
637
638
639
403225
404496
405769
407044
408321
256047875
257259456
258474853
259694072
260917119
25.1992
25.2190
25.2389
25.2587
25.2784
8.5952
8.5997
8.6043
8.6088
8.6132
585
586
587
588
589
342225
343396
344569
345744
34692 1
200201625
201230056
202262003
203297472
204336469
24.1868
24.2074
24.2281
24.2487
24.2693
8.3634
8.3682
8.3730
8.3777
8.3825
640
641
642
643
644
409600
410881
412164
413449
414736
262144000
263374721
264609288
265847707
267089984
25.2982
25.3180
25.3377
25.3574
25.3772
8.6177
8.6222
8.6267
8.6312
8.6357
590
591
592
593
594
348100
349281
350464
351649
352836
205379000
206425071
207474688
208527857
209584584
24.2899
24.3105
24.3311
24.3516
24.3721
8.3872
8.3919
8.3967
8.4014
8.4061
645
646
647
648
649
416025
417316
4 1 8609
419904
421201
268336125
269586136
27084002.3
272097792
273359449
25.3969
25.416
25.436
25.4558
25.475
8.6401
8.6446
8.6490
8.6535
8.6579
100
MATHEMATICAL TABLES.
No.
650
651
652
653
654
Square.
Cube.
Sq.
Root.
Cube
Root.
No.
705
706
707
708
709
Square
Cube*
Sq.
Root.
Cube
Root.
422500
42380!
425104
426409
427716
274625000
275894451
277167808
278445077
279726264
25.4951
25.5147
25.5343
25.5539
25.5734
6.6624
8.6668
8.6713
8.6757
8.6801
497625
498436
499849
501264
502681
350402625
351895816
353393243
354894912
356400829
26.5518
26.5707
26.5895
26.6083
26.6271
8.9001
8.9043
8.9085
8.9127
8.9169
655
656
657
658
659
429025
430336
431649
432964
434281
281011375
282300416
283593393
284890312
286191179
25.5930
25.6125
25.6320
25.6515
25.6710
8.6845
8.6890
8.6934
8.6978
8.7022
710
711
712
713
714
504100
505521
506944
508369
509796
35791 100C
359425431
360944128
362467097
363994344
26.6458
26.6646
26.6833
26.7021
26.7208
8.9211
8.9253
8.9295
8.9337
8.9378
660
661
662
663
664
435600
43692 1
438244
439569
440896
287496000
288804781
290117528
291434247
292754944
25.6905
25.7099
25.7294
25.7488
25.7682
8.7066
8.7110
8.7154
8.7198
8.7241
715
716
717
718
719
511225
512656
5 1 4089
515524
516961
365525875
367061696
368601813
370146232
371694959
26.7395
26.7582
26.7769
26.7955
26.8142
8.9420
8.9462
8.9503
8.9545
8.9587
665
566
667
663
669
442225
443556
444889
446224
447561
294079625
295408296
296740963
298077632
299418309
25.7876
25.8070
25.8263
25.8457
25.8650
8.7285
87329
8.7373
8.7<16
8.7460
720
721
722
723
724
518400
519841
521284
522729
524176
373248000
374805361
376367048
377933067
379503424
26.8328
26.8514
26.8701
26.8887
26.9072
8.9628
8.9670
8.9711
8.9752
8.9794
670
671
672
673
674
448900
450241
451584
452929
454276
300763000
302111711
303464448
304821217
306182024
25.8844
25.9037
25.9230
25.9422
25.9615
8.7503
8.7547
8.7590
8.7634
8.7677
725
726
727
728
729
525625
527076
528529
529984
531441
381078125
382657176
384240583
385828352
387420489
26.9258
26.9444
26.9629
26.9815
27.0000
8.9835
8.9876
8.9918
8.9959
9.0000
675
676
677
673
679
455625
456976
458329
459684
461041
307546875
308915776
310288733
311665752
313046839
25.9808
26.0000
26.0192
26.0384
26.0576
8.7721
8.7764
8.7807
8.7850
8.7893
730
731
732
733
734
532900
534361
535824
537289
538756
389017000
390617891
392223168
393832837
395446904
27.0185
27.0370
27.0555
27.0740
27.0924
9.0041
9.0082
9.0123
9.0164
9.0205
680
681
682
683
684
462400
463761
465124
466489
467856
314432000
315821241
317214568
318611987
320013504
26.0768
26.0960
26.1151
26.1343
26.1534
8.7937
8.7980
8.8023
8.8066
8.8109
735
736
737
738
739
540225
541696
543169
5 4464 4
546121
397065375
398688256
400315553
401947272
403583419
27.1109
27.1293
27.1477
27.1662
27.1846
9.0246
9.0287
9.0328
9.0369
9.0410
685
686
687
688
689
469225
470596
471969
473344
474721
321419125
322828856
324242703
325660672
327082769
26.1725
26.1916
26.2107
26.2298
26.2488
8.8152
8.8194
8.8237
8.8280
8.8323
740
741
742
743
744
54760C
54908 1
550564
552049
553536
405224000
406869021
408518488
410172407
411830784
27.2029
27.2213
27.2397
27.2580
27.2764
9.0450
90491
9.0532
9.0572
9.0613
690
691
692
693
694
476100
477481
478864
480249
481636
328509000
329939371
331373888
332812557
334255384
26.2679
26.2869
26.3059
26.3249
26.3439
8.8366
8.8408
8.8451
8.8493
8.8536
745
746
747
748
749
555025
556516
558009
559504
561001
413493625
415160936
416832723
418508992
420189749
27.2947
273130
27.3313
27.3496
27.3679
9.0654
9.0694
9.0735
9.0775
9.0816
695
696
697
698
699
483025
484416
485809
487204
488601
335702375
337153536
338608873
340068392
341532099
26.3629
26.3818
26.4008
26.4197
26.4386
8.8578
8.8621
8.8663
8.8706
8.8748
750
751
752
753
754
562500
564001
565504
567009
568516
421875000
423564751
425259008
426957777
428661061
27.3861
27.4044
27.4226
27.4408
27.4591
9.0856
90896
9.0937
9.0977
9.1017
700
701
702
703
704
490000
491401
492804
494209
495616
343000000
344472101
345948408
347428927
348913664
26.4575
26.4764
26.4953
26.5141
26.5330
88790
8.8833
8.8875
8.8917
8.8959
755
756
757
758
759
570025
571536
573049
574564
576081
430368875
432081216
433798093
435519512
437245479
27.4773
27.4955
27.5136
27.5318
27.5500
9 1057
9.1098
9.1138
9 1178
9.1219
SQUARES, CUBES, SQUARE AND CUBE ROOTS. 101
No
Square
Cube.
Sq.
Root.
Cube
Root.
No
Square
Cube.
Sq.
Root.
Cube
Root.
760
577600
438976000
27.5681
9.1258
~8l5
664225
541343375
28.5482
9.3408
76
57912
440711081
27.5862
9.1298
816
665856
543338496
28.5657
9.3447
762
580644
442450728
27.6043
9.1338
81
667489
545338513
28.5832
9.3485
763
532 1 69
444194947
27.6225
9.1378
818
66912
547343432
28.6007
9.3523
764
583696
445943744
27.6405
9.1418
819
67076
549353259
28.6182
9.3561
765
585225
447697125
27.6586
9.1458
820
672400
55136800C
28.6356
9.3599
766
586756
449455096
27.6767
9. 1 498
82
67404
55338766
28.6531
9.3637
767
588289
451217663
27.6948
9.1537
822
67568
55541224S
28.6705
9.3675
768
589824
452984832
27.7128
9.1577
823
67732
55744176
28.6880
9.3713
769
591361
454756609
27.7308
9.1617
824
678976
559476224
28.7054
9.3751
770
592900
456533000
27.7489
9.1657
825
68062
561515625
28.7228
9.3789
771
594441
458314011
27.7669
9.1696
826
682276
563559976
28.7402
9.3827
772
595984
460099648
27.7849
9.1736
827
683929
565609283
28.7576
9.3865
773
597529
461889917
27.8029
9.1775
828
685584
567663552
28.7750
9.3902
774
599076
463684824
27.8209
9.1815
829
68724
569722789
28.7924
9.3940
775
600625
465434375
27.8388
9.1855
830
688900
571787000
28.8097
9.3978
776
602176
467288576
27.8568
9.1894
83
69056
57385619
28.8271
9.4016
777
603729
469097433
27.8747
9.^33
832
692224
575930368
28.8444
9.4053
778
605284
470910952
27.8927
9.1973
833
693889
578009537
28.8617
9.4091
779
606341
472729139
27.9106
9.2012
834
695556
580093704
28.8791
9.4129
780
603400
474552000
27.9285
9.2052
835
697225
582182875
28.8964
9.4166
781
609961
476379541
27.9464
9.2091
836
698896
584277056
28.9131
9.4204
782
611524
478211768
27.9643
9.2130
837
700569
586376253
28.9310
9.4241
783
6(3089
430048687
27.9821
9.2170
838
702244
588480472
28.9482
9.4279
784
614656
431890304
28.0000
9.2209
839
703921
590589719
28.9655
9.4316
785
616225
483736625
28.0179
9.2248
840
705600
592704000
28.9828
9.4354
786
617796
485587656
28.0357
9.2287
841
707281
594823321
29.0000
9.4391
787
619369
487443403
28.0535
9.2326
842
708964
596947688
29.0172
9.4429
788
620944
489303872
28.0713
9.2365
843
710649
599077107
29.0345
9.4466
789
622521
491169069
28.0891
9.2404
844
712336
601211584
29.0517
9.4503
790
624100
493039000
28.1069
9.2443
845
714025
603351125
29.0689
9.4541
791
625631
494913671
28.1247
9.2482
846
715716
605495736
29.0861
9.4578
792
627264
496793088
28.1425
9.2521
847
717409
607645423
29.1033
9.4615
793
623349
498677257
28.1603
9.2560
848
719104
609800192
29.1204
9.4652
794
630436
500566184
28.1780
9.2599
849
720801
611960049
29.1376
9.4690
795
632025
502459875
28.1957
9.2638
850
722500
614125000
29.1548
9.4727
796
633616
504358336
28.2135
9.2677
851
724201
616295051
29.1719
9.4764
797
635209
506261573
28.23129.2716
852
725904
618470208
29. 1 890
9.4801
798
636804
508169592
28.2489
9.2754
853
727609
620650477
29.2062
9.4838
799
638401
510082399
28.2666
9.2793
854
729316
622835864
79.2233
9.4875
800
640000
512000000
28.2843
9.2832
855
731025
625026375
29.2404
9.4912
801
641601
513922401
28.3019
9.2870
856
732736
627222016
29.2575
9.4949
802
643204
515849608
28.3196
9.2909
857
734449
629422793
29.2746
9.4986
803
644809
517781627
28.3373
9.2948
858
736164
631628712
29.2916
9.5023
804
646416
519718464
28.3549
9.2986
859
737881
633839779
29.3087
9.5060
805
648025
521660125
28.3725
9.3025
860
739600
636056000
29.3258
9.5097
806
649636
523606616
28.3901
9.3063
861
741321
638277381
29.3428
9.5134
807
651249
525557943
28.4077
9.3102
862
743044
640503928
29.3598
9.5171
808
652864
527514112
28.4253
9.3140
863
744769
642735647
29.3769
9.5207
809
654481
529475129
28.4429
9.3179
864
746496
644972544
29.3939
9.5244
810
656100
531441000
28.4605
5.3217
865
748225
647214625
9.4109
9.5231
811
657721
533411731
28.4781
5.3255
866
49956
49461896
9.4279
9.5317
812
659344
35387328
28.4956 9.3294
867
51689
51714363 29.4449
9.5354
813
814
660969 37367797
662596 539353144
28.51329.3332
28.5307 9.3370
868 5342465397203229.4618
8691 755 1 6 1 1 656234909! 29.4788
9.5391
9.5427
102
MATHEMATICAL TABLES.
No.
870
871
872
873
874
Square.
Cube.
Sq.
Root.
Cube
Root.
No.
~925
926
927
928
929
Square
Cube.
Sq.
Root.
Cube
Root.
756900
758641
760384
762129
763876
658503000
660776311
663054848
665338617
667627624
29.4958
29.5127
29.5296
29.5466
29.5635
9.5464
9.5501
9.5537
9.5574
9.5610
855625
857476
859329
861184
863041
791453125
794022776
796597983
799178752
801765089
30.4138
30.4302
30.4467
30.4631
30.4795
9.7435
9.7470
9.7505
9.7540
9.7575
875
876
877
878
879
765625
767376
769129
770884
772641
669921875
672221376
674526133
676836152
679151439
29.5804
29.5973
29.6142
29.63 1 1
29.6479
9.5647
9.5683
9.5719
9.5756
9.5792
930
931
932
933
934
864900
866761
868624
870489
872356
804357000
806954491
809557568
812166237
814780504
30.4959
30.5123
30.5287
30.5450
30.5614
9.76M
9.7645
9.7680
9.7715
9.7750
880
881
882
883
884
774400
776161
777924
779689
781456
681472000
683797841
686128968
688465387
690807104
29.6648
29.6816
29.6985
29.7153
29.7321
9.5828
9.5865
9.5901
9.5937
9.5973
935
936
937
938
939
874225
876096
877969
879844
881721
817400375
820025856
822656953
825293672
827936019
30.5778
30.5941
30.6105
30.6268
30.6431
9.7785
9.7819
9.7854
9.7889
9.7924
885
886
887
888
889
783225
784996
786769
788544
790321
693154125
695506456
697864103
700227072
702595369
29.7489
29.7658
29.7825
29.7993
29.8161
9.6010
9.6046
9.6082
9.6118
9.6154
940
941
942
943
944
883600
885481
887364
889249
891136
830584000
833237621
835896888
838561807
841232384
30.6594
30.6757
30.6920
30.7083
30.7246
9.7959
9.7993
9.8028
9.8063
9.8097
890
891
892
893
694
792100
793881
795664
797449
799236
704969000
707347971
709732288
712121957
714516984
29.8329
29.8496
29.8664
29.8831
29.8998
9.6190
9.6226
9.6262
9.6298
9.6334
945
946
947
948
949
893025
894916
896809
898704
900601
843908625
846590536
849278123
851971392
854670349
30.7409
30.7571
30.7734
30.7896
30.8058
9.8132
9.8167
9.8201
9.8236
9.8270
895
896
897
898
899
801025
802816
804609
806404
808201
716917375
719323136
721734273
724150792
726572699
29.9166
29.9333
29.9500
29.9666
29.9833
9.6370
9.6406
9.6442
9.6477
9.6513
950
951
952
953
954
902500
904401
906304
908209
910116
857375000
860085351
862801408
865523177
868250664
30.8221
30.8383
30.8545
30.8707
30.8869
9.8305
9.8339
9.8374
9.8408
9.8443
900
901
902
903
904
810000
811801
813604
815409
817216
729000000
731432701
733870808
736314327
738763264
30.0000
30.0167
30.0333
30.0500
30.0666
9.6549
9.6585
9.6620
9.6656
9.6692
955
956
957
958
959
912025
913936
915849
917764
919681
870983875
873722816
876467493
879217912
881974079
30.9031
30.9192
30.9354
30.9516
30.9677
9.8477
9.8511
9.8546
9.8580
9.8614
905
906
907
908
909
819025
820836
822649
824464
826281
741217625
743677416
746142643
748613312
751089429
30.0832
30.0998
30.1164
30.1330
30.1496
9.6727
9.6763
9.6799
9.6834
9.6870
960
961
962
963
964
921600
923521
925444
927369
929296
884736000
887503681
890277128
893056347
895841344
30.9839
31.0000
31.0161
31.0322
31.0483
9.8648
9.8683
9.8717
9.8751
9.8785
910
911
912
913
914
828100
829921
831744
833569
835396
753571000
75605803 1
758550528
761048497
763551944
30.1662
30.1828
30.1993
30.2159
30.2324
9.6905
9.6941
9.6976
9.7012
9.7047
965
966
967
968
969
931225
933156
935089
937024
938961
898632125
901428696
904231063
907039232
909853209
3 1 .0644
3 1 .0805
3 1 .0966
31.1127
31.1288
9.8819
9.8854
9.8888
9.8922
9.8956
915
916
917
918
919
837225
839056
840889
842724
844561
766060875
768575296
771095213
773620632
776151559
30.2490
30.2655
30.2820
30.2985
30.3150
9.7082
9.7118
9.7153
9.7188
9.7224
970
971
972
973
974
940900
942841
944784
946729
948676
912673000
915498611
918330048
921167317
924010424
31.1448
31.1609
31.1769
31.1929
31.2090
9.8990
9.9024
9.9058
9.9092
9.9126
920
921
922
923
924
846400
848241
850084
851929
853776
778688000
781229961
783777448
786330467
7888890241
30.3315
30.3480
30.3645
30.3809
30.3974
9.7259
9.7294
9.7329
9.7364
9.7400
975
976
977
978
979
950625
952576
954529
956484
958441
926859375
929714176
932574833
935441352
938313739
31.2250
31.2410
31.2570
31.2730
31.2890
9.9160
99194
9.9227
9.9261
9.9293
SQUARES, CUBES, SQUARE AND CUBE ROOTS. 103
No.
Square.
Cube.
Sq.
Root.
Cube
Root.
No.
Square.
Cube.
Sq.
Root.
Cube
Root.
980
960400
941 192000
31.3050
9.9329
1035
1071225
1108717875
32.1714
10.1153
981
962361
944076141
31.3209
9.9363
1036
10732%
1111934656
32.1870
10.1186
982
964324
946966168
31.3369
9.93%
1037
1075369
1115157653
32.2025
10.1218
983
966289
949862087
31.3528
9.9430
1038
1077444
1 1 18386872
32.2180
10.1251
984
968256
952763904
31.3688
9.9464
1039
1079521
1121622319
32.2335
10.1283
985
970225
955671625
31.3847
9.9497
1040
1081600
1124864000
32.2490
10.1316
986
9721%
958585256
31.4006
9.9531
1041
1083681
1128111921
32.2645
10 1348
987
974169
%1 504803
31.4166
9.9565
1042
1085764
1131366088
32.2800
10.1381
988
976144
964430272
31.4325
9.9598
1043
1087849
1134626507
32.2955
10.1413
989
978121
%7361669
31.4484
9.%32
1044
1089936
1137893184
32.3110
10.1446
990
980100
970299000
31.4643
9.%66
1045
1092025
1141166125
32.3265
10.1478
991
982081
973242271
31.4802
9.%99
1046
1094116
1144445336
32.3419
10.1510
992
984064
976191488
31.4960
9.9733
1047
10%209
1147730823
32.3574
10.1543
993
986049
979146657
31.5119
9.9766
1048
1098304
1151022592
32.3728
10.1575
994
988036
982107784
31.5278
9.9800
1049
ir00401
1154320649
32.3883
10.1607
995
990025
985074875
31.5436
9.9833
1050
1 102500
1157625000
32.4037
10.1640
9%
992016
988047936
31.5595
9.9866
1051
1104601
1160935651
32.4191
10.1672
997
994009
991026973 31.5753
9.9900
1052
1 106704
1164252608
32.4345
10.1704
998
996004
99401 1992
31.5911
9.9933
1053
1108809
1167575877
32.4500
10.1736
999
998001
997002999
31.6070
9.9%7
1054
1110916
1170905464
32.4654
10.1769
1000
1000000
1000000000
31.6228
10.0000
1055
1 1 13025
1174241375
32.4808
10.1801
1001
1002001
1003003001
31.6386
10.0033
1056
1115136
1177583616
32.4%2
10.1833
1002
1004004
1006012008
31.6544
10.0067
1057
1117249
1180932193
32.5115
10.1865
1003
1006009
1009027027
31.6702
10.0100
1058
1 1 19364
1184287112
32.5269
10.1897
1004
1008016
1012048064
31.6860
10.0133
1059
1121481
1 187648379
32.5423
10.1929
1005
1010025
1015075125
31.7017
10.0166
1060
1123600
1191016000
32.5576
10.1%1
1006
1012036
1018108216
31.7175
10.0200
1061
1125721
1 194389981
32.5730
10.1993
1007
1014049
1021147343
31.7333
10.0233
1062
1127844
1 197770328
32.5833
10.2025
1008
1016064
1024192512
31.7490
10.0266
1063
1129%9
1201157047
32.6036
10.2057
1009
1018081
1027243729
31.7648
10.0299
1064
11320%
1204550144
32.6190
10.2089
1010
T020100
1030301000
31.7805
10.0332
1065
1134225
120794%25
32 6343
10.2121
1011
1022121
1033364331
31.7962
10.0365
1066
1136356
12113554%
32.6497
10.2153
1012
1024144
1036433728
31.8119
10.0398
1067
1138489
1214767763
32.6650
10.2185
1013
1026169
1039509197
31.8277
10.0431
1063
1140624
1218186432
32.6803
10.2217
1014
10281%
1042590744
31.8434
10.0465
1069
1142761
1221611509
32.6956
10.2249
1015
1030225
1045678375
31.8591
10.0498
1070
1144900
1225043000
32.7109
10.2281
1016
1032256
10487720%
31.8748
10.0531
1071
1 147041
1228480911
32.7261
10.2313
1017
1034289
1051871913
31.8904
10.0563
1072
1149184
1231925248
32.7414
10.2345
1018
1036324
1054977832
31.9061
10.0596
1073
1151329
1235376017
32.7567
10.2376
1019
1038361
1058089859
31.9218
10.0629
1074
1153476
1238833224
32.7719
10.2408
1020
1040400
1061208000
31.9374
10.0662
1075
1155625
1242296875
32.7872
10.2440
1021
1042441
1064332261
31.9531
10.0695
1076
1157776
1245766976
32.8024
10.2472
1022
1044484
1067462648
31.9687
10.0728
1077
1159929
1249243533
32.8177
10.2503
1023
1046529
1070599167
31.9844
10.0761
1078
1162084
1252726552
32.8329
10.2535
1024
1048576
1073741824
32.0000
10.0794
1079
1 164241
1256216039
32.8481
10.2567
1025
1050625
1076890625
32.0156
10.0826
1080
1166400
1259712000
32.8634
10.2599
1026
1052676
1080045576
32.0312
10.0859
1081
1 168561
1263214441
32.8786
10.2630
1027
1054729
1083206683
32.0468
10.0892
1032
1170724
1266723368
32.8938
10.2662
1028
1056784
1086373952
32.0624
10.0925
1033
1172889
1270238787
32.9090
10.2693
1029
1058841
1089547389
32.0780
10.0957
1084
1175056
1273760704
32.9242
10.2725
1030
1060900
1092727000
32.0936
10.0990
1035
1177225
1277289125
32.9393
10.2757
1031
1062%!
1095912791
32.1092
10.1023
1036
11793%
1280824056
32.9545
10.2788
1032
1065024
1099104768
32.1248
10.1055
1037
1181569
1284365503
32.%97
10.2820
1033
10670S9
1 102302937
32.1403
10.1088
1088
1183744
1287913472
32.9848
10.2851
1034
1069156
1105507304
32.1559
10.1121
1089
11 8592 11 1291 467969
33.0000
10.2883
104
MATHEMATICAL TABLES.
No.
T090
Square.
Cube.
Sq.
Root.
Cube
Root.
No.
Square.
Cube.
Sq.
Root.
Cube
Root.
1188100
1295029000
33.0151
10.2914
1145
1311025
1501123625
33.8378
10.4617
1091
1 190281
12985%571
33.0303i 10.2946
1146
1313316
1505060136
33.8526
10.4647
1092
1093
1192464
1194649
1302170688
1305751357
33.0454
33.0606
10.297/
10.3009
1147
1148
1315609
1317904
1509003523
1512953792
33.8674
33.882
10.4678
10.4708
1094
1196836
1309338584
33.0757
10.3040
1149
132020
1516910949
33.8%9
10.4739
1095
1199025
1312932375
33.0908
10.307
1150
1322500
1520875000
33.9116
10.4769
10%
1201216
1316532736
33.1059
10.3103
1151
1324801
1524845951
33.9264
10.4799
1097
1203409
1320139673
33.1210
10.3134
1152
1327104
1528823808
33.9411
10.4830
1098
1205604
1323753192
33.1361
10.3165
1153
1329409
1532808577
33.9559
10.4860
1099
1207801
1327373299
33.1512
10.3197
1154
1331716
1536800264
33.9706
10.4890
1100
1210000
1331000000
33.1662
10.3228
1155
1334025
1540798875
33.9853
10.4921
1101
1212201
1334633301
33.1813J 10.3259
1156
1336336
1544804416
34.0000
10.4951
1102
1214404
1338273208
33.1964! 10.3290
1157
1338649
1548816893
34.0147
10.4981
1103
1216609
1341919727
33 .21141 10.3322
1158
1340964
1552836312
34.0294
10.5011
1104
1218816
1345572864
33.2264
103353
1159
1343281
1556862679
34.0441
10.5042
1105
1221025
1349232625
33.2415
10.3384
1160
1345600
1560896000
34.0588
10.5072
1106
1223236
1352899016
33.2566
10.3415
1161
1347921
1564936281
34.0735
10.5102
1107
1225449
1356572043
33.2716
10.3447
1162
1350244
1568933528
34.0881
10.5132
1108
1227664
1360251712
33.2866
10.3478
1163
1352569
1573037747
34.1028
1 0.5 162
1109
1229881
1363938029
33.3017
10.3509
1164
13548%
1577098944
34.1174
10.5192
1110
1232100
1367631000
33.3167
10.3540
1165
1357225
1581167125
34.1321
10.5223
1111
1234321
1371330631
33.3317
10.3571
1166
1359556
15852422%
34.1467
10.5253
1112
1236544
1375036928
33.3467
10.3602
1167
1361889
1589324463
34.1614
10.5283
1113
1238769
1378749897
33.3617
10.3633
1168
1364224
1593413632
34.1760
10.5313
1114
12409%
1382469544
33.3766
10.3664
1169
1366561
1597509809
34.1906
10.5343
1115
1243225
1386195875
33.3916
10.3695
1170
1368900
1601613000
34.2053
10.5373
1116
1245456
13899288%
33.4066
10.3726
1171
1371241
1605723211
34.2199
10.5403
1117
1247689
1393668613
33.4215
103757
1172
1373584
1609840448
34.2345
10.5433
1118
1249924
1397415032
33.4365
10.3788
1173
1375929
1613964717
34.2491
10.5463
1119
1252161
1401168159
33.4515
10.3819
1174
1378276
1618096024
34.2637
10.5493
1120
1254400
1404928000
33.4664
10.3850
1175
1380625
1622234375
34.2783
10.5523
1121
1256641
408694561
33.4813
10.3881
1176
1382976
1626379776
34.2929
10.5553
1122
1258884
412467848
33.4%3
10.3912
1177
1385329
1630532233
34.3074
10.5583
1123
1261 129
416247867
33.5112
10.3943
1178
1387684
1634691752
34.3220
10.5612
1124
1263376
420034624
33.5261
10.3973
1179
1390041
638858339
34.3366
10.5642
1125
1265625
423828125
33.5410
10.4004
1180
1392400
643032000
34.3511
10.5672
1126
1267876
427628376
33.5559
10.4035
1181
1394761
647212741
34.3657
10.5702
1127
1270129
431435383
33.5708
10.4066
1182
1397124
65140056834.3802
10.5732
1128
1272384
435249152
33.5857
10.4097
1183
1399489
655595487
34.3948
0.5762
1129
1274641
439069689
33.6006
10.4127
1184
1401856
659797504
34.4093
0.5791
1130
1276900
442897000
33.6155
10.4158
1185
1404225
664006625
34.4238
0.5821
\\3\
1279161
446731091
33.6303
10.4189
1186
1406596
668222856
34.4384
0.5851
1132
1281424
450571968 33.6452
10.4219
1187
140S%9
672446203
34.4529
0.5881
1133
1283689
4544 1%37| 33 .6601
10.4250
1158
1411344
676676672
34.4674
0.5910
1134
1285956
458274104
33.6749
10.4281
1189
1413721
680914269
34.4819
0.5940
1135
1288225
462135375
33.6898
10.4311
1190
1416100
685159000
34.4964
0.5970
1136
12904%
466003456133.7046
10.4342
1191
1418481
689410871
34.5109
0.6000
1137
1292769
469878353 33.7174
10.4373
1192
1420864
693669888
34.5254
0.6029
1138
1295044
473760072 33.7342
10.4404
1193
1423249
697936057
34.5398
0.6059
1139
1297321
477648619
33.7491
10.4434
1194
1425636
702209384
34.5543
0.6088
1140
1299600
481544000
33.7639
10.4464
1195
1428025
706489875
34,5688
0.6118
1141
1301881
485446221 33.7787
10.4495
11%
1430416
710777536
34.5832
0.6148
1142
1304164
489355288 33.7935
10 4525
1197
1432809
715072373
34.5977
0.6177
1143
1306449
493271207 33.8083
10.4556
1198
1435204
719374392
34.6121
0.6207
1144
1308736
497193934338231
10.4586
1199
1437601 '1723683599
34.6266
0.6236
SQUARES, CUBES, SQUARE AND CUBE ROOTS. 105
No
1200
Square.
Cube.
Sq.
Root.
Cube
Root.
No.
Square.
Cube.
Sq.
Root.
Cube
Root.
1440000
1728000000
34.6410
10.6266
1255
1575025
1976656375
35.4260
10.7865
1201
1442401
1732323601
34.6554
10.6295
1256
1577536
1981385216
35.4401
10.7894
1202
1444804
1 736654408
34.6699
10.6325
1257
1580049
1986121593
35.4542
10.7922
1203
1447209
1740992427
34.6843
10.6354
1258
1582564
1990865512
35.4683
10.7951
1204
1449616
1745337664
34.6987
10.6384
1259
1585081
1995616979
35.4824
10.7980
1205
1452025
1749690125
34.7131
10.6413
1260
1587600
2000376000
35.4%5
10.8008
1206
1454436
1754049816
34.7275
10.6443
1261
1590121
2005142581
35.5106
10.8037
1207
1456849
1758416743
34.7419
10.6472
1262
1592644
2009916728
35.5246
10.8065
1208
1459264
1762790912
34.7563
1C.6501
1263
1595169
2014698447
35.5387
10.8094
1209
1461631
1767172329
34.7707
10.6530
1264
15976%
2019487744
35.5528
10.8122
1210
1464100
1771561000
34.7851
10.6560
1265
1600225
202428.4625
35.5668
10.8151
1211
1 466521
1775956931
34.7994
10.6590
1266
1602756
2029089096
35.5809
10.8179
1212
1463944
1780360128
34.8138
10.6619
1267
1605289
2033901163
35.5949
10.8208
1213
1471369
1784770597
34.8281
10.6648
1268
1607824
2038720832
35.6090
10.8236
1214
1473796
1789188344
34.8425
10.6678
1269
1610361
2043548109
35.6230
10.8265
1215
1476225
1793613375
34.8569
10.6707
1270
1612900
2048383000
35.6371
10.8293
1216
1478656
17980456%
34.8712
10.6736
1271
1615441
2053225511
35.6511
10.8322
1217
1481089
1802485313
34.8855
10.6765
1272
1617984
2058075648
35.6651
10.8350
1218
1433524
1806932232
34.8999
10.6795
1273
1620529
2062933417
35.6791
10.8378
1219
1485%!
1811386459
34.9142
10.6324
1274
1623076
2067798824
35.6931
10.8407
1220
1438400
1815848000
34.9285
10.6853
1275
1625625
2072671875
35.7071
10.8435
1221
1490841
1820316861
34.9428
10.6882
1276
1628176
2077552576
35.7211
10.8463
1222
1493284
1824793048
34.9571
10.691 1
1277
1630729
2082440933
35.7351
10.8492
1223
1495729
1829276567
34.9714
10.6940
1278
1633284
2087336952
35.7491
10.8520
1224
1498176
1833767424
34.9357
10.6970
1279
1635841
2092240639
35.7631
10.8548
1225
1500625
1838265625
35.0000
10.6999
1280
1638400
2097152000
35.7771
10.857;
1226
1503076
1842771176
35.0143
10.7028
1281
1640%!
2102071041
35.791 1
10.8605
1227
1505529
1847284033
35.0286
10.7057
1282
1643524
2106997768
35.8050
10.8633
1223
1507984
1851804352
35.0428
10.7086
1283
1646089
2111932187
35.8190
10.8661
1229
1510441
1856331989
35.0571
10.7115
1284
1648656
21 16874304
35.8329
10.8690
1230
1512900
1860867000
35.0714
10.7144
1285
1651225
2121824125
35.8469
10.8718
1231
1515361
1865409391
35.0856
10.7173
1286
1653796
2126781656
35.8608
10.8746
1232
1517824
1869959163
35.0999
10.7202
1287
1656369
2131746903
35.8748
10.8774
1233
1520239
1874516337
35.1141
10.7231
1238
1658944
2136719872
35.8887
10.8802
1234
1522756
1879080904
35.1283
10.7260
1289
1661521
2141700569
35.9026
10.8831
1235
1525225
1833652875
35.1426
10.7289
1290
1664100
2146689000
35.9166
10.8859
1236
1527696
1838232256
35.1568
10.7318
1291
1666681
2151685171
35.9305
10.8887
1237
1530169
1892819053
35.1710
10.7347
1292
1669264
2156689088
35.9444
10.8915
1233
1532644
1897413272
35.1852
10.7376
1293
1671849
2161700757
35.9583
10.8943
1239
1535121
1902014919
35.1994
10.7405
1294
1674436
2166720184
35.9722
10.8971
1240
1537600
1906624000
35.2136
10.7434
1295
1677025
2171747375
35.9fBl
10.8959
1241
1540081
1911240521
35.2278
10.7463
1296
167%16
2176782336
36.0000
10.9027
1242
1542564
1915864438
35.2420
10.7491
1297
1682209
2181825073
36.0139
10.9055
1243
1545049
1920495907
35.2562
10.7520
1298
1684804
2186875592
36.0278
10.9083
1244
1547536
1925134784
35.2704
10.7549
1299
1687401
2191933899
36.0416
10.9111
1245
1550025
1929781125
35.2846
10.7578
1300
1690000
2197000000
36.0555
10.9139
1246
1552516
1934434936
35.2987
10.7607
1301
1692601
2^02073901
36.0694
10.9167
1247
1555005
1939096223
35.3129
10.7635
1302
1695204
2207155608
36.0832
10.9195
1243
1557504
1 943764992
35.3270
10.7664
1303
1697809
2212245127
36.0971
10.9223
1249
1560001
1948441249
35.3412
10.7693
1304
1700416
2217342464
36.1109
10.9251
1250
1562509
1953125000
35.3553
10.7722
1305
1703025
2222447625
36.1248
10.9279
1251
1555011
1957816251
35.3695
10.7750
1306
1705636
2227560616
36.1386
10.9307
1252
1567504
1962515008
35.3836
10.7779
1307
1708249
2232681443
36.1525
10.9335
1253
1570009
1967221277
35.3977
10.7808
1308
1710864
22378101 12
36.1663
10.9363
1254
1572516
197193506435.4119
10.7837
1309
1713481
2242946629
36.1801
10.9391
106
MATHEMATICAL TABLES.
No.
Square.
Cube.
Sq.
Root.
Cube
.Root.
No.
Square.
Cube.
Sq.
Root.
Cube
Root.
T310
1716100
2248091000
36.1939
10.9418
1365
1863225
2543302125
36.9459
1 1 .0929
1311
1718721
2253243231
36.2077
10.9446
1366
1865956
25488958%
36.9594
1 1 .0956
1312
1721344
2258403328
36.2215
10.9474
1367
1868689
2554497863
36.9730
1 1 .0983
1313
1723969
2263571297
36.2353
10.9502
1368
1871424
2560108032
36.9865
11.1010
1314
17265%
2268747144
36.2491
10.9530
1369
1874161
2565726409
37.0000
11.1037
1315
1729225
2273930875
36.2629
10.9557
1370
1876900
2571353000
37.0135
11.1064
1316
1731856
22791224%
36.2767
10.9585
1371
1879641
257698781 1
37.0270
11.1091
1317
1734489
2284322013
36.2905
10.%13
1372
1882384
2582630848
37.0405
11.1118
1318
1737124
2289529432
36.3043
10.9640
1373
1885129
2588282117
37.0540
11.1145
1319
1739761
2294744759
36.3180
10.9668
1374
1887876
2593941624
37.0675
11.1172
1320
1742400
2299968000
36.3318
10.%%
1375
1890625
2599609375
37.0810
11.1199
1321
1745041
2305199161
36.3456
10.9724
1376
1893376
2605285376
37.0945
11.1226
1322
1747684
2310438248
36.3593
10.9752
1377
18%129
261096%33
37.1080
11.1253
1323
1750329
2315685267
36.3731
10.9779
1378
1898884
2616662152
37.1214
11.1280
1324
1752976
2320940224
36.3868
10.9807
1379
1901641
2622362939
37.1349
11.1307
1325
1755625
2326203125
36.4005
10.9834
1380
1904400
2628072000
37.1484
11.1334
1326
1758276
2331473976
36.4143
10.9862
1381
1907161
2633789341
37.1618
11.1361
1327
1760929
2336752783
36.4280
10.9890
1382
1909924
2639514968
37.1753
11.1387
1328
1763584
2342039552
36.4417
10.9917
1383
1912689
2645248887
37.1887
11.1414
1329
1766241
2347334289
36.4555
10.9945
1384
1915456
2650991104
37.2021
11.1441
1330
1768900
2352637000
36.4692
10.9972
1385
1918225
2656741625
37.2156
11.1468
1331
1771561
2357947691
36.4829
11.0000
1386
1920996
2662500456
37.2290
11.1495
1332
1774224
2363266368
36.4966
1 1 .0028
1387
1923769
2668267603
37.2424
11.1522
1333
1776889
2368593037
36.5103
11.0055
1388
1926544
2674043072
37.2559
11.1548
1334
1779556
2373927704
36.5240
11.0083
1389
1929321
2679826869
37.2693
11.1575
1335
1782225
2379270375
36.5377
11.0110
1390
1932100
2685619000
37.2827
11.1602
1336
1784896
2384621056
36.5513
11.0138
1391
1934881
2691419471
37.2961
11.1629
1337
1787569
2389979753
36.5650
11.0165
1392
1937664
2697228288
37.3095
11.1655
1338
1790244
2395346472
36.5787
11.0193
1393
1940449
2703045457
37.3229
11.1682
1339
1792921
2400721219
36.5923
11.0220
1394
1943236
2708870984
37.3363
11.1709
1340
1795600
2406104000
36.6060
11.0247
1395
1946025
2714704875
37.3497
11.1736
1341
1798281
2411494821
36.6197
1 1 .0275
1396
1948816
2720547136
37.3631
11.1762
1342
1800964
2416893688
36.6333
1 1 .0302
1397
1951609
2726397773
37.3765
11.1789
1343
1803649
2422300607
36.6469
1.0330
1398
1954404
2732256792
37.3898
11.1816
1344
1806336
2427715584
36.6606
1 .0357
1399
1957201
2738124199
37.4032
11.1842
1345
1809025
2433138625
36.6742
.0384
1400
1960000
2744000000
37.4166
11.1869
1346
1811716
2438569736
36.6879
.0412
1401
1962801
2749884201
37.4299
11.1896
1347
1814409
2444008923
36.7015
.0439
1402
1%5604
2755776808
37.4433
11.1922
1348
1817104
2449456192
36.7151
.0466
1403
1%8409
2761677827
37.4566
11.1949
1349
1819801
2454911549
36.7287
.0494
1404
1971216
2767587264
37.4700
11.1975
1350
1822WO
2460375000
36.7423
.0521
1405
1974025
2773505125
37.4833
11.2002
1351
1825201
2465846551
36.7560
1 .0548
1406
1976836
2779431416
37,4967
1 1 .2028
1352
1827904
2471326208
36.76%
1 .0575
1407
1979649
2785366143
37.5100
1 1 .2055
1353
1830609
2476813977
36.7831
.0603
1408
1982464
2791309312
37.5233
1 1 .2082
1354
1833316
2482309864
36.7967
1.0630
1409
1985281
2797260929
37.5366
11.2108
1355
1836025
2487813875
36.8103
.0657
1410
1988100
2803221000
37.5500
11.2135
1356
1838736
2493326016
36.8239
1.0684
1411
1990921
2809189531
37.5633
11.2161
1357
1841449
2498846293
36.8375
1.0712
1412
1993744
2815166528
37.5766
11. 2 188
1358
1844164
2504374712
36.8511
1.0739
1413
19%569
2821151997
37.5699
11.2214
1359
1846881
2509911279
36.8646
1 .0766
1414
1999396
2827145944
37.6032
1 1 .2240
1360
1849600
2515456000
36.8782
1 .0793
1415
2002225
2833148375
37 6165
11.2267
1361
1852321
2521008881
36.8917
1 .0820
1416
2005056
28391592%
37.6298
11.2293
1362
1855044
2526569928
36.9053
1 .0847
1417
2007889
2845178713
37.6431
11.2320
1363
1857769
2532139147
36.9188 11.0875
1418
2010724
2851206632
37.6563
1 1 2346
1364 18604%
2537716544
36.9324 1 1 .0902
1419
2013561
2857243059
37.66%
1 1 2373
SQUARES, CUBES, SQUARE AND CUBE ROOTS. 107
No.
Square.
Cube.
Sq. |
Root.
Cube
Root.
No.
Square.
Cube.
Sq.
Root.
Cube
Root.
1420
1421
1422
1423
1424
2016400
2019241
2022084
2024929
2027776
2863288000
2869341461
2875403448
2881473967
2887553024
37.6829
37.6962
37.7094
37.7227
37.7359
1 1 .2399
1 1 .2425
1 1 .2452
11.2478
11.2505
1475
1476
1477
1478
1479
2175625
2178576
2181529
2184484
2187441
3209046875
3215578176
3222118333
3228667352
3235225239
38.4057
38 4187
38.4318
38.4448
38.4578
1 1 .3832
1 1 .3858
1 1 .3883
11.3909
11.3935
1425
1426
1427
1428
1429
2030625
2033476
2036329
2039184
2042041
2893640625
2899736776
2905841483
2911954752
2918076589
37.7492
37.7624
37.7757
37.7889
37.8021
11.2531
11.2557
1 1 .2583
11.2610
11.2636
1480
1481
1482
1483
1484
2190400
2193361
21%324
2199289
2202256
3241792000
3248367641
3254952168
3261545587
3268147904
38.4708
38.4838
38.4968
38.5097
38.5227
11.3960
11.3986
11.4012
11.4037
11.4063
1430
1431
1432
1433
1434
2044900
2047761
2050624
2053489
2056356
2924207000
2930345991
2936493568
2942649737
2948814504
37.8153
37.8286
37.8418
37.8550
37.8682
11.2662
11.2689
11.2715
11.2741
11.2767
1485
1486
1487
1488
1489
2205225
2208196
2211169
2214144
2217121
3274759125
3281379256
3288008303
3294646272
3301293169
38.5357
38.5487
38.5616
38.5746
38.5876
11.4089
11.4114
11 4140
11.4165
11.4191
1435
1436
1437
1438
1439
2059225
20620%
2064969
2067844
2070721
2954987875
2961169856
2967360453
2973559672
29797675 19
37.8814
37.8946
37.9078
37.9210
37.9342
11.2793
11.2820
1 1 .2846
11.2872
1 1 .2898
1490
1491
1492
1493
1494
2220100
2223081
2226064
2229049
2232036
3307949000
3314613771
3321287488
3327970157
3334661784
386005
38.6135
386264
38.6394
38.6523
11.4216
11.4242
1 1 .4268
1 1 .4293
11.4319
1440
1441
1442
1443
1444
2073600
2076481
2079364
2032249
2085136
2985984000
2992209121
2998442888
3004685307
3010936384
37.9473
37.9605
37.9737
37.9868
38.0000
1 1 .2924
11.2950
1 1 .2977
1 1 .3003
11.3029
1495
1496
1497
1493
1499
2235025
2238016
2241009
2244004
2247001
3341362375
3348071936
3354790473
3361517992
3368254499
38.6652
38.6782
38.691 1
38.7040
38.7169
1 1 .4344
1 1 .4370
11.4395
11.4421
11.4446
1445
1446
1447
1448
1449
2088025
2090916
2093809
2096704
2099601
3017196125
3023464536
3029741623
3036027392
3042321849
38.0132
38.0263
38.0395
38 0526
38.0657
1 1 .3055
11.3081
11.3107
11.3133
11.3159
1500
1501
1502
1503
1504
2250000
2253001
2256004
2259009
2262016
3375000000
3381754501
3388518008
3395290527
3402072064
38.7298
38.7427
38.7556
38.7685
38.7814
11.4471
1 1 .4497
11.4522
1 1 .4548
11.4573
1450
1451
1452
1453
1454
2102500
2105401
2108304
2111209
2114116
3048625000
3054936851
3061257408
3067586677
3073924664
38.0789
38.0920
38.1051
38.1182
38.1314
11.3185
11.3211
1 1 .3237
1 1 .3263
11.3289
1505
1506
1507
1508
1509
2265025
2268036
2271049
2274064
2277081
3408862625
3415662216
3422470843
3429288512
3436115229
38.7943
38.8072
38 8201
38.8330
38.8458
11.4598
11.4624
11.4649
11.4675
11.4700
1455
1456
1457
1458
1459
2117025
2119936
2122849
2125764
2128681
3080271375
3086626816
3092990993
3099363912
3105745579
38.1445
38.1576
38.1707
38.1838
38.1969
11.3315
11.3341
1 1 .3367
11.3393
11.3419
1510
1511
1512
1513
1514
2280100
2283121
2286144
2289169
22921%
3442951000
3449795831
3456649728
3463512697
3470384744
38.8587
38.8716
38.8844
38.8973
38.9102
11.4725
11.4751
11 ,4776
11.4801
11.4826
1460
1461
1462
1463
1464
2131600
2134521
2137444
2140369
2143296
3112136000
3118535181
3124943128
3131359847
3137785344
38.2099
38.2230
38.2361
38.2492
38.2623
11.3445
11.3471
11.34%
11.3522
11.3548
1515
1516
1517
1518
1519
2295225
2298256
2301289
2304324
2307361
3477265875
34841560%
3491055413
3497%3832
3504881359
38.9230
38.9358
38.9487
38.%15
38.9744
11.4852
11.4877
11.4902
11.4927
11.4953
1465
1466
1467
1468
1469
2146225
2149156
2152089
2155024
2157%1
3144219625
3150662696
3157114563
3163575232
3170044709
38.2753
38.2884
38.3014
38.3145
38.3275
11.3574
11.3600
11.3626
1 1 .3652
11.3677
1520
1521
1522
1523
1524
2310400
2313441
2316484
2319529
2322576
3511808000
3518743761
3525688648
3532642667
3539605824
38.9872
39.0000
39.0128
39.0256
39.0384
11.4978
11.5003
11.5028
11.5054
11.5079
1470
1471
M72
1473
1474
2160900
2163841
2166784
2169729
2172676
3176523000
3183010111
3189506048
3196010817
3202524424
38.3406
38.3536
38.3667
38.3797
38 3927
11.3703
1 1 .3729
1 1 .3755
1 1 3780
11.3806
1525
1526
1527
4528
1529
2325625
2328676
2331729
2334784
2337841
3546578125
3553559576
3560550183
3567549952
3574558889
39.0512
39.0640
39.0768
39.08%
39.1024
11.5104
11.5129
11.5154
11.5179
11.5204
108
MATHEMATICAL TABLES,
No.
1530
1531
1532
1533
1534
Square.
Cube.
Sq.
Root.
Cube
Root.
No.
"7565
1566
1567
1568
1569
Square.
Cube.
Sq.
Root.
Cube
Root.
2340900
2343961
2347024
2350089
2353156
3581577000
3588604291
3595640768
3602686437
3609741304
39.1152
39.1280
39.1408
39.1535
39.1663
1 1 .5230
11.5255
11.5280
11.5305
11.5330
2449225
2452356
2455489
2458624
2461761
3833037125
38403894%
3847751263
3855123432
3862503009
39.5601
39.5727
39.5854
39.5980
39.6106
11.6102
11.6126
11.6151
11.6176
11.6200
1535
1536
1537
1538
1539
2356225
23592%
2362369
2365444
2368521
3616805375
3623878656
3630% 11 53
3638052872
3645153819
39.1791
39.1918
39.2046
39.2173
39.2301
11.5355
1 1 .5380
1 1 .5405
1 1 .5430
1 1 .5455
1570
1571
1572
1573
1574
2464900
2468041
2471184
2474329
2477476
3869893000
3877292411
3884701248
3892119517
3899547224
39.6232
39.6358
39.6485
39.661 1
39.6737
11.6225
1 1 .6250
1 1 .6274
1 1 .6299
11.6324
1540
1541
1542
1543
1544
2371600
2374681
2377764
2380849
2383936
3652264000
3659383421
3666512088
3673650007
3680797184
39.2428
39.2556
39.2683
39.2810
39.2938
1 1 .5480
11.5505
11.5530
11.5555
11.5580
1575
1576
1577
1578
1579
2480625
2483776
2486929
2490084
2493241
3906984375
3914430976
3921887033
3929352552
3936827539
39.6863
39.6989
39.7115
39.7240
39.7366
1 1 .6348
1 1 .6373
1 1 .6398
1 1 .6422
1 1 .6447
1545
1546
1547
1548
154Q
2387025
2390116
2393209
2396304
2399401
3687953625
3695119336
3702294323
3709478592
3716672149
39.3065
393192
39.3319
39.3446
39.3573
1 1 .5605
1 1 .5630
1 1 .5655
11.5680
11.5705
1580
1581
1582
1583
1584
2496400
2499561
2502724
2505889
2509056
3944312000
3951805941
3959309368
3966822287
3974344704
39.7492
39.7618
39.7744
39.7869
39.7995
11.6471
11.64%
11.6520
1 1 .6545
1 1 .6570
1550
1551
1552
1553
1554
2402500
2405601
2408704
2411809
2414916
3723875000
3731087151
3738308608
3745539377
3752779464
39.3700
39.3827
39.3954
39.4081
39.4208
1 1 .5729
11.5754
1 1 .5779
1 1 .5804
1 1 .5829
1585
1586
1587
1588
1589
2512225
25153%
2518569
2521744
2524921
3981876625
3989418056
3996%9003
4004529472
4012099469
39.8121
39.8246
39.8372
39.8497
39.8623
1 1 .6594
11.6619
1 1 .6643
11.6668
1 1 .6692
1555
1556
1557
1558
1559
2418025
2421136
2424249
2427364
2430481
3760028875
3767287616
3774555693
3781833112
37891 19879
39.4335
39.4462
39.4588
39.4715
39.4842
11.5854
1 1 .5879
1 1 .5903
1 1 .5928
1 1 .5953
1590
1591
1592
1593
1594
2528100
2531281
2534464
2537649
2540836
401%79000
4027268071
4034866688
4042474857
4050092584
39.8748
39.8873
39.8999
39.9124
39.9249
11.6717
1 1 .6741
1 1 .6765
1 1 .6790
11.6814
1560
1561
1562
1563
1564
2433600
2436721
2439844
2442969
24460%
3796416000
3803721481
381 1036328
3818360547
3825694144
39.4968
39.5095
39.5221
39.5348
39.5474
1 1 .5978
11.6003
11.6027
1 1 .6052
11.6077
1595
15%
1597
1598
1599
2544025
2547216
2550409
2553604
2556801
4057719875
4065356736
4073003173
4080659192
4088324799
39.9375
39.9500
39.%25
39.9750
39.9875
1 1 .6839
1 1 .6863
11 6888
11.6912
11.6936
1600
2560000
4096000000
40.0000
11.6961
SQUARES AND CUBES OF DECIMALS.
No.
Square
Cube.
No.
Square
Cube.
No.
Square.
' Cube.
\2
.01
.04
.001
.008
.01
.02
.0001
.0004
.000 001
.000 008
.001
.002
.00 00 01
.00 00 04
.000 000 001
.000 000 008
.09
.027
.03
.0009
.000 027
.003
.00 00 09
.000 000 027
*4
.16
.064
.04
.0016
.000 064
.004
.00 00 16
,000 000 064
.5
.25
.125
.05
.0025
.000 125
.005
.00 00 25
.000 000 125
6
.36
.216
.06
.0036
.000 216
.006
.00 00 36
.000 000 216
.7
.49
.343
.07
.0049
.000 343
.007
.00 00 49
.000 000 343
8
.64
.512
.08
.0064
.000 512
.008
.00 00 64
.000 000 512
.9
.81
.729
.09
.0081
.000 729
.009
.00 00 81
.000 000 729
1 0
1 00
1.000
.10
.0100
.001 000
.010
.00 01 00
.000 001 000
1.44
1.728
.12
.0144
.001 728
.012
.00 01 44
.000 001 728
Note that the square has twice as many decimal places, and the cube
.three times as many decimal places, as the root.
FIFTH ROOTS AND FIFTH POWERS,
109
FIFTH ROOTS AND FIFTH POWERS.
(Abridged from TRAUTWINB.)
*i
&&
Power.
o 3
£«
Power.
(H .
o -^
ll
Power.
S<i
ll
Power.
li
Itf
Power.
.10
.000010
3.7
693.440
9.8
90392
21.8
4923597
40
102400000
.15
.000075
3.8
792.352
9.9
95099
22.0
5153632
41
115856201
.20
.000320
3.9
902.242
10.0
100000
22.2
5392186
42
130691232
.25
.000977
4.0
1024.00
10.2
110408
22.4
5639493
43
147008443
.30
.002430
4.1
1158.56
10.4
121665
22.6
5895793
44
164916224
.35
.005252
4.2
1306.91
10.6
133823
22.8
6161327
45
184528125
.40
.010240
4.3
1470.08
10.8
146933
23.0
6436343
46
205962976
.45
.018453
4.4
1649.16
11.0
161051
23.2
6721093
47
229345007
.50
.031250
4.5
1845.28
11.2
176234
23.4
7015834
48
254803968
.55
.050328
4.6
2059.63
11.4
192541
23.6
7320825
49
282475249
.60
.077760
4.7
2293.45
11.6
210034
23.8
7636332
50
312500000
.65
.116029
4.8
2548.04
11.8
228776
24.0
7962624
51
345025251
.70
.168070
49
2824.75
12.0
248832
24.2
8299976
52
380204032
.75
.237305
5.0
3125.00
12.2
270271
24.4
8648666
53
418195493
.80
.327680
5.1
3450.25
12.4
293163
24.6
9008978
54
459165024
.85
.443705
5.2
3802.04
12.6
317580
24.8
9381200
55
503284375
.90
.590490
5.3
4181.95
12.8
343597
25.0
9765625
56
550731776
.95
.773781
5.4
4591 65
13.0
371293
25.2
10162550
57
601692057
.00
1.00000
5.5
5032.84
13.2
400746
25.4
10572278
58
656356768
.05
1.27628
5.6
5507.32
13.4
432040
25.6
10995116
59
714924299
.10
1.61051
5.7
6016.92
13.6
465259
25.8
11431377
60
777600000
.15
2.01135
5.8
6563.57
13.8
500490
26.0
11881376
61
844596301
.20
2.48832
5.9
7149.24
14.0
537824
26.2
12345437
62
916132832
.25
3.05176
6.0
7776.00
14.2
577353
26.4
12823886
63
992436543
.30
3.71293
6.1
8445.96
14.4
619174
26.6
13317055
64
1073741824
.35
4.48403
6.2
9161.33
14.6
663383
26.8
13825281
65
1160290625
.40
5.37824
6.3
9924.37
14.8
710082
27.0
14348907
66
1252332576
.45
6.40973
6.4
10737
15.0
759375
27.2
14888280
67
1350125107
.50
7.59375
6.5
11603
15.2
811368
27.4
15443752
68
1453933568
.55
8.94661
6.6
12523
15.4
866171
27.6
16015681
69
1564031349
.60
10.4858
6.7
13501
15.6
923896
27.8
1 6604430
70
1680700000
.65
12.2298
6.8
14539
15.8
984658
28.0
17210368
71
1804229351
.70
14.1986
6.9
15640
16.0
1048576
28.2
17833868
72
1934917632
.75
16.4131
7.0
16807
16.2
1115771
28.4
18475309
73
2073071593
.80
18.8957
7.1
18042
16.4
1186367
28.6
19135075
74
2219006624
.85
21.6700
7.2
19349
16.6
1260493
28.8
19813557
75
2373046875
.90
24.7610
7.3
20731
16.8
1338278
29.0
20511149
76
2535525376
.95
28.1951
7.4
22190
17.0
1419857
29.2
21228253
77
2706784157
2.00
32.0000
7.5
23730
17.2
1 505366
29.4
21965275
78
2887174368
2.05
36.2051
7.6
25355
17.4
1594947
29.6
22722628
79
3077056399
2.10
40.8410
7.7
27068
17.6
1688742
298
23500728
80
3276800000
2.15
45.9401
7.8
28872
17.8
1 786899
30.0
24300000
81
3486784401
2.20
51.5363
7.9
30771
18.0
1889568
30.5
26393634
82
3707398432
2.25
57.6650
8.0
32768
18.2
1996903
31.0
28629151
83
3939040643
2.30
64.3634
8.1
34868
18.4
2109061
31.5
31013642
84
4182119424
2.35
71.6703
8.2
37074
18.6
2226203
32.0
33554432
85
4437053125
2.40
79.6262
8.3
39390
18.8
2348493
32.5
36259082
86
4704270176
2.45
88.2735
8.4
41821
19.0
2476099
33.0
39135393
87
4984209207
2.50
97.6562
8.5
44371
19.2
2609193
33.5
42191410
88
5277319168
2.55
107.820
8.6
47043
19.4
2747949
34.0
45435424
89
5584059449
2.60
118.814
8.7
49842
19.6
2892547
34.5
48875980
90
5904900000
2.70
143.489
8.8
52773
19.8
3043168
35.0
52521875
91
6240321451
2.80
172.104
8.9
55841
20.0
3200000
35.5
56382167
92
6590815232
2.90
205.111
9.0
59049
20.2
3363232
36.0
60466176
93
6956883693
3.00
243.000
9.1
62403
20.4
3533059
36.5
64783487
94
7339040224
3.10
286.292
9.2
65908
20.6
3709677
37.0
69343957
95
7737809375
3.20
335.544
9.3
69569
20.8
3893289
37.5
74157715
96
8153726976
3.30
391.354
9.4
73390
21.0
4084101
38.0
79235168
97
8587340257
3.40
454.354
9.5
77378
21.2
4282322
38.5
84587005
98
9039207968
3.50
525.219
9.6
81537
21.4
4488 1 66
39.0
90224199
99
9509900499
3.60
604.662
9.7
85873
21.6
4701850
39.5
96158012
110
MATHEMATICAL TABLES.
tt
|-
53
1 O
!l
81
Bl
0
0
I
LO CO C
O — r
-'' —
---
OI>«.O^
m !>• co c
CNt^ — C
o o O •- «ri i
•
OvO
^O — C
-
ooow^oooooomom. oooinoomoooomtnoro c^.o
-1 — !>. — mo^-OiAOPOOoor^oot>NO'^-vOfNOOio'Tt'
-< — '-
«— — -• — — «N «N <N (N <S (S (S fS <N C
,..
f^t^.t^.0 — (NpTiOO'^TOOO — <N
oo — covo — <NPM — ir^rt-r>.in
O O O O O — fS CO vO 00 -O CO <N r
— fT
d OO CO — '
U^ICN —
SI"
C.S
'^fCNfN
o — oooo
ooooo — — — <•
Is
1.-
CIRCUMFERENCES AND AREAS OF CIRCLES.
CIRCUMFERENCES AND AREAS OF CIRCLES.
Ill
Diam.
Circum.
Area.
Diam.
Circum.
Area.
Diam.
Circum.
Area.
1/64
.04909
.00019
23/8
7.4613
4.4301
6Vs
19.242
29 465
1/32
. 098 1 8
.00077
7/16
7.6576
4 . 6664
1/4
19.635
30 680
3/64
.14726
.00173
i/3
7.8540
4.9087
3/8
20.028
31 919
Vl6
.19635
.00307
9/16
8.0503
5.1572
V2
20.420
33 183
3/32
.29452
.00690
5/8
8.2467
5.4119
5/8
20.813
34.472
Vs
.39270
.01227
H/16
8.4430
5.6727
3/4
21.206
35 785
5/32
.49087
.01917
3/4
8.6394
5.9396
7/8
21.598
37. 122
3/16
. 58905
.02761
13/16
8.8357
6.2126
21.991
38.485
7/32
. 68722
.03758
7/8
9.0321
6.4918
*l/8
22.384
39.871
15/16
9.2284
6.7771
V4
22.776
41.282
1/4
.78540
. 04909
3/8
23 . 1 69
42.718
»/32
.88357
.06213
3.
9.4248
7.0686
V2
23.562
44. 179
5/16
.98175
.07670
Vl6
9.6211
7.3662
5/8
23.955
45 . 664
H/32
.0799
.09281
Vs
9.8175
7 . 6699
3/4
24.347
47.173
3/8
. 1781
.11045
3/16
10.014
7.9798
7/8
24.740
48.707
13/32
.2763
.12962
!/4
10.210
8.2958
8.
25.133
50.265
7/16
.3744
..15033
5/16
10.407
8.6179
V8
25.525
51.849
15/32
.4726
.17257
3/8
10.603
8.9462
1/4
25.918
53.455
7/16
10.799
9.2806
3/8
26.311
55.088
1/2
.5708
.19635
1/2
10.996
9.6211
V2
26.704
56.745
17/32
.6690
.22166
9/16
11. 192
9.9678
5/8
27.096
58.426
9/18
.7671
.24850
5/8
1 1 . 388
10.321
3/4
27.489
60. 132
19/32
.8653
.27688
H/16
11.585
10.680
7/8
27.882
61.862
5/8
.9635
.30680
3/4
11.781
11.045
9.
28.274
63.617
21/32
2.0617
.33824
13/16
11.977
11.416
1/8
28.667
65.397
H/16
2.1598
.37122
7/8
12.174
1 1 . 793
1/4
29.060
67.201
23/32
2.2580
.40574
15/16
12.370
12.177
3/8
29.452
69.029
4.
12.566
12.566
1/2
29.845
70.882
3/4
2.3562
.44179
Vl6
12.763
12.962
5/8
30.238
72.760
25/32
2.4544
.47937
1/8
12.959
13.364
3/4
30.631
74.662
13/16
2.5525
.51849
3/16
13. 155
13.772
•7/8
3 1 . 023
76.589
27/32
2.6507
.55914
1/4
13.352
14. 186
10.
31.416
78.540
7/8
2.7489
.60132
5/16
13.548
14.607
V8
3 1 . 809
80.516
29/32
2.8471
.64504
3/8
13.744
15.033
1/4
32.201
82.516
15/16
2.9452
. 69029
7/16
13.941
15.466
3/8
32.594
84.541
31/32
3.0434
.73708
1/2
14.137
1 5 . 904
V2
32.987
86.590
9/16
14.334
16.349
5/8
33.379
88,664
1.
3.1416
.7854
5/8
14.530
16.800
3/4
33.772
90.763
Vl6
3.3379
.8866
U/16
14.726
17.257
7/8
34. 165
92.886
•1/8
3.5343
.9940
3/4
14.923
17.721
11.
34.558
95.033
3/16
3.7306
.1075
13/16
15.119
18. 190
1/8
34.950
97.205
1/4
3.9270
.2272
7/8
15.315
18.665
1/4
35.343
99.402
5/16
4.1233
.3530
15/16
15.512
19.147
3/8
35.736
101.62
3/8
4.3197
.4849
5.
15.708
19.635
V2
36. 128
103.87
7/16
4.5160
.6230
Vl6
1 5 . 904
20. 129
5/8
36.521
106.14
1/2
4.7124
.7671
1/8
16. 101
20.629
3/4
36.914
108.43
'•Vie
4.9087
.9175
3/16
16.297
21.135
7/8
37.306
110.75
5/8
5.1051
2.0739
1/4
16.493
21.648
13.
37.699
113.10
H/16
5.3014
2.2365
5/l6
16.690
22 . 1 66
V8
38.092
115.47
3/4
5.4978
2.4053
3/8
16.886
22.691
1/4
38.485
117.86
13/16
5.6941
2.5802
7/16
17.082
23.221
3/8
38.877
120.28
7/8
5.8905
2.7612
1/2
17.279
23.758
1/2
39.270
122.72
15/16
6.0868
2.9483
9/16
17.475
24.301
5/8
39.663
125.19
5/8
17.671
24.850
3/4
40.055
127.68
3.
6.2832
3.1416
n/ie
17.868
25.406
7/8
40.448
130.19
Vl6
6.4795
3.3410
3/4
18.064
25.967
13.
40.841
132.73
1/8
6.6759
3.5466
13/16
18.261
26.535
V8
41.233
135 30
3/16
6.8722
3.7583
7/8
18.457
27. 109
1/4
41.626
137.89
1/4
7 . 0686
3.9761
15/16
18.653
27.688
3/8
42.019
140.50
5/16
7.2649
4.2000
6.
18.850
28.274
1/2
42.412
143.14
112
MATHEMATICAL TABLES.
Diam.
Circum.
Area.
Diam.
Circum.
Area.
Diam
Circum.
Area.
135/8
42.804
145.80
217/8
68.722
375.83
30 Vs
94.640
712.76
3/4
43.197
148.49
23.
69. 115
380.13
1/4
95.033
718.69
7/8
43.590
151.20
1/8
69.508
384.46
3/8
95.426
724 64
14.
43 , 982
153.94
1/4
69.900
388.82
1/2
95.819
730.62
1/8
44.375
156.70
3/8
70.293
393.20
5/8
96.211
736.62
1/4
44.768
159.48
1/2
70.686
397.61
3/4
96.604
742.64
3/8
45.160
162.30
5/8
71.079
402.04
7/8
96.997
748.69
V2
45.553
165.13
3/4
71.471
406.49
31.
97.389
754.77
5/8
45.946
167.99
7/8
71.864
410.97
V8
97.782
760.87
3/4
46.338
170.87
23.
72.257
415.48
1/4
98.175
766.99
7/8
46.731
173.78
1/8
72.649
420.00
3/8
98.567
773. 14
15.
47.124
176.7!
1/4
73.042
424.56
1/2
98.960
779.31
J-/8
47.517
179.67
3/8
73.435
429.13
5/8
99.353
785.51
1/4
47.909
182.65
1/2
73.827
433.74
3/4
99.746
791 73
3/8
48.302
185.66
5/8
74.220
438.36
7/8
100. 138
797.98
V2
48.695
188.69
3/4
74.613
443.01
32.
100.531
804.25
5/8
49.087
191.75
7/8
75.006
447.69
Vs
100.924
810.54
3/4
49.480
194.83
24.
75.398
452.39
1/4
101.316
816.86
7/8
49.873
197.93
1/8
75.791
457.11
3/8
101.709
823.21
16.
50.265
201.06
1/4
76. 184
461.86
1/2
102.102
829.58
Vs
50.658
204.22
3/8
76.576
466.64
5/8
102.494
835.97
V4
51.051
207.39
1/2
76.969
471.44
3/4
102.887
842.39
3/8
51.444
210.60
5/8
77.362
476.26
7/8
103.280
848.83
V2
51.836
213.82
3/4
77.754
481.11
33.
103.673
855.30
5/8
52.229
217.08
7/8
78.147
485.98
1/8
104.065
861.79
3/4
52.622
220.35
25.
78.540
490.87
1/4
104.458
868.31
7/8
53.014
223.65
1/8
78.933
495.79
3/8
104.851
874.85
17.
53.407
226.98
1/4
79.325
500.74
V2
105.243
881.41
Vs
53.800
230.33
3/8
79.718
505.71
5/8
105.636
888.00
1/4
54.192
233.71
1/2
80.111
510.71
3/4
106.029
894.62
3/8
54.585 -
237.10
5/8
80.503
515.72
7/8
106.421
901.26
1/2
54.978
240.53
3/4
80.896
520.77
34.
106.814
907.92
5/8
55.371
243.98
7/8
81.289
525.84
V8
107.207
914.61
3/4
55.763
247.45
26.
81.681
530.93
1/4
107.600
921.32
7/8
56.156
250.95
1/8
82.074
536.05
3/8
107.992
928.06
18.
56.549
254.47
1/4
82.467
541.19
1/2
108.385
934.82
1/8
56.941
258.02
3/8
82.860
546.35
5/8
108.778
941.61
1/4
57.334
261.59
1/2
83.252
551.55
3/4
109. 170
948.42
3/8
57.727
265.18
5/8
83.645
556.76
7/8
109.563
955.25
1/2
58.119
268.80
3/4
-84.038
562.00
35.
109.956
962 . 1 1
5/8
58.512
272.45
7/8
84.430
567.27
1/8
110.348
969 . 00
3/4
58.905
276.12
27.
84.823
572.56
1/4
110.741
975.91
7/8
59.298
279.81
Vs
85.216
577.87
3/8
111. 134
982.84
19.
59.690
283.53
1/4
85.608
583.21
1/2
111.527
989.80
1/8
60.083
287.27
3/8
86.001
588.57
5/8
111.919
996.78
1/4
60.476
291.04
1/2
86.394
593.96
3/4
112.312
1003.8
3/8
60.868
294.83
5/8
86.786
599.37
7/8
112.705
1010.8
1/2
61.261
298.65
3/4
87.179
604.81
36.
113.097
1017.9
5/8
61.654
302.49
7/8
87.572
610.27
1/8
113.490
1025.0
3/4
62 . 046
306.35
28.
87.965
615.75
1/4
113.883
1032.1
7/8
62.439
310.24
V8
88.357
621.26
3/8
114.275
1039.2
20.
62.832
314.16
1/4
88.750
626.80
1/2
114. 668
1046.3
1/8
63.225
318.10
3/8
89.143
632.36
5/8
115.061
1053.5
1/4
63.617
322.06
1/2
89.535
637.94
3/4
115.454
1060.7
3/8
64.010
326.05
5/8
89.928
643.55
7/8
115.846
1068.0
1/2
64.403
330.06
3/4
90.321
649.18
37.
116.239
1075.2
5/8
64.795
334.10
7/8
90.713
654.84
1/8
116.632
1082.5
3/4
65.188
338.16
29.
91.106
660.52
1/4
117.024
1089.8
7/8
65.581
342.25
1/8
91.499
666.23
3/8
117.417
1097.1
21.
65.973
346.36
V4
91 .892
671.96
1/2
17.810
1104.5
1/8
66.366
350.50
3/8
92.284
677.71
5/8
18.202
1111.8
1/4
66.759
354.66
1/2
92.677
683 . 49
3/4
1-8.596
1119.2
3/8
67.152
358.84
5/8
93.070
689.30
7/8
18.988
1126.7
1/2
67.544
363.05
3/4
93.462
695.13
38.
19.381
1134.1
5/8
67.937
367.28
7/8
93.855
700.98
1/8
19.773
1141.6
3/4
68.330
371.54
30.
94.248
706 . 86
V4
120.166
1149.1
CIRCUMFERENCES AND AREAS OF CIRCLES. 113
Dtam
Circuin.
Area.
Diara
Circum.
Area.
Diam
Circum.
Area.
883/8
120.559
1136.6
465/8
146.477
1707.4
547/g
172.395
2365.0
1/2
120.951
1164.2
3/4
146.869
1716.5
55.
172.788
2375.8
5/8
121.344
1171.7
7/8
147.262
1725.7
1/8
173.180
2386.6
3/4
121.737
1179.3
47.
147.655
1734.9
V4
173.573
2397.5
7/8
122.129
1186.9
Vs
148.048
1744.2
3/8
173.966
2408.3
39.
122.522
1194.6
V4
148.440
1753.5
V2
174.358
2419.2
l/8
122.915
1202.3
3/8
148.833
1762.7
5/8
174.751
2430. 1
1/4
123.308
1210.0
V2
149.226
1772. 1
3/4
175. 144
2441. 1
3/8
123.700
1217.7
5/8
149.618
1781.4
7/8
175.536
2452.0
1/2
124.093
1225.4
3/4
150.011
1790.8
56.
175.929
2463.0
5/8
124.486
1233.2
7/8
150.404
1800. 1
Vs
176.322
2474.0
3/4
124.878
1241.0
48.
150.796
1809.6
1/4
176.715
2485.0
7/8
125.271
1248.8
Vs
151.189
1819.0
3/8
177. 107
2496. 1
40.
125.664
1256.6
1/4
151.582
1828.5
1/2
177.500
2507.2
Vs
126.056
1264.5
$
151.975
1837.9
5/8
177.893
2518.3
1/4
126.449
1272.4
1/2
152.367
1847.5
3/4
178.285
2529.4
3/8
126.842
1280.3
5/8
152.760
1857.0
7/8
178.678
2540.6
1/9
127.235
1288.2
3/4
153. 153
1866.5
57.
179.071
2551.8
5/8
127.627
1296.2
7/8
153.545
1876. 1
1/8
1 79. 463
2563.0
3/4
128.020
1304.2
49.
153.938
1885.7
V4
179.856
2574.2
7/a
128.413
1312.2
Vs
154.331
1895.4
3/8
180.249
2585.4
41.
128.805
1320.3
V4
154.723
1905.0
1/2
180.642
2596.7
Vs
129.198
1328.3
3/8
155.116
1914.7
5/8
181.034
2608.0
V4
129.591
1336.4
V2
155.509
1924.4
3/4
181.427
2619.4
3/8
129.983
1344.5
5/8
155.902
1934.2
7/8
181.820
2630.7
I/O
130.376
1352.7
3/4
156.294
1943.9
58.
182.212
2642. 1
5/8
130.769
1360.8
7/8
156.687
1953.7
VS
182.605
2653.5
3/4
131.161
1369.0
50.
157 080
1963.5
V4
182.998
2664.9
7/8
131.554
1377.2
Vs
157.472
1973.3
3/8
183.390
2676.4
42.
131.947
1385.4
1/4
157.865
1983.2
1/2
183.783
2687.8
1/8
132.340
1393.7
3/jj
158.258
1993.1
5/8
184.176
2699.3
V?
132.732
1 402 . 0
1/9
158.650
2003.0
3/4
184.569
2710.9
3/8
133.125
1410.3
5/8
159.043
2012.9
7/8
184.961
2722.4
1/9
133.518
1418.6
8/4
159.436
2022.8
59.
185.354
2734.0
5/8
133.910
1427.0
7/8
159.829
2032.8
i/a
185.747
2745.6
3/4
134.303
1435.4
51.
160.221
2042.8
1/4
186.139
2757.2
7/8
134.696
1443.8
Vs
160.614
2052.8
3/8
186.532
2768.8
43.
135.088
1452.2
*/4
161.007
2062.9
1/2
186.925
2780.5
Vs
135.481
1460.7
3/8
161.399
2073.0
5/8
187.317
2792.2
1/4
135.874
1469. 1
1/2
161.792
2083.1
3/4
187.710
2803.9
3/8
136.267
1477.6
5/8
162.185
2093.2
7/8
188.103
2815.7
V2
136.659
1486.2
3/4
162.577
2103.3
60.
188.496
2827.4
5/8
137.052
1494.7
7/8
162.970
2113.5
Vs
188.888
2839.2
3/4
137.445
1503.3
53.
163.363
2123.7
1/4
189.281
2851.0
7/8
137.837
1511.9
Vs
163.756
2133.9
3/8
189.674
2862.9
44.
138.230
1520.5
V4
164.148
2144.2
1/2
190.066
2874.8
Vs
138.623
1529.2
3/8
164.541
2154.5
5/8
190.459
2886.6
V4
139.015
1537.9
1/2
164.934
2164.8
3/4
190.852
2898.6
3/8
139.408
1546.6
5/8
165.326
2175.1
7/8
191.244
2910.5
V2
139.801
1555.3
3/4
165.719
2185.4
61.
191.637
2922.5
5/8
140.194
1564.0
7/8
166.112
2195.8
1/8
192.030
2934.5
3/4
140.586
1572.8
53.
166.504
2206.2
V4
192.423
2946.5
7/8
140.979
1581.6
Vs
166.897
2216.6
3/8
192.815
2958.5
45.
141.372
1590.4
V4
167.290
2227.0
1/2
193.208
2970.6
Vs
141.764
1599.3
3/8
167.683
2237.5
5/8
193.601
2982 . 7
V4
142.157
1608.2
1/2
168.075
2248.0
3/4
193.993
2994.8
3/8
142.550
1617.0
5/8
1 68 . 468
2258.5
7/8
194.386
3006.9
Va
142.942
1626.0
3/4
168.861
2269.1
62.
194.779^
3019.1
5/8
143.335
1634.9
7/8
169.253
2279.6
Vs
195. 171
3031.3
3/4
143.728
1643.9
54.
169.646
2290.2
V4
195.564
3043.5
7/8
144. 121
1652.9
1/8
170.039
2300.8
3/8
195.957
3055.7
46.
144.513
1661.9
1/4
170.431
2311.5
V2
196.350
3068.0
Vs
144.906
1670.9
3/8
170.824
2322.1
5/8
196.742
3080.3
V4
145.299
1680.0
1/2
171.217
2332.8
8/4
197.135
3092.6
3/8
145.691
1689.1
5/8
171.609
2343.5
7/8
197.528
3 1 04 . 9
, V2
146.084
1698.2
3/4
172.002
2354.3
63.
197.920
3117.2
114
MATHEMATICAL TABLES.
Diam.
63V8~
Circum.
Area.
Diam
Circum.
Area.
Diam
Circum.
Area.
"4979.1
198.313
3129.6
713/8
224.231
4001.1
795/8
250.149
1/4
198.706
3142.0
1/2
224.624
4015.2
3/*
250.542
4995 . 2
3/8
199.098
3154.5
5/8
225.017
4029.2
7/8
250.935
5010.9
1/2
199.491
3166.9
3/4
225.409
4043.3
80.
251.327
5026.5
5/8
199.884
3179.4
7/8
225.802
4057.4
1/8
251.720
5042.3
3/4
200.277
3191.9
73.
226. 195
4071.5
1/4
252. 113
5058.0
7/8
200.669
3204.4
Vs
226.587
4085.7
3/8
252.506
5073.8
64.
201.062
3217.0
1/4
226.980
4099.8
!/2
252.898
5089.6
1/8
201.455
3229.6
3/8
227.373
4114.0
5/8
253.291
5105.4
V4
201.847
3242.2
V2
227.765
4128.2
3/4
253.684
5121.2
3/8
202.240
3254.8
5/8
228.158
4142.5
7/8
254.076
5137. 1
Va
202.633
3267.5
3/4
228.551
4156.8
81.
254.469
5153.0
5/8
203.025
3280.1
7/8
228.944
4171.1
V8
254.862
5 1 68 . 9
3/4
203.418
3292.8
73.
229.336
4185.4
1/4
255.254
5184.9
7/8
203.811
3305.6
1/8
229.729
4199.7
3/8
255.647
5200.8
65.
204.204
3318.3
1/4
230.122
4214.1
1/2
256.040
5216.8
Vs
204.596
3331.1
3/8
230.514
4228.5
5/8
256.433
5232.8
V4
204.989
3343.9
V2
230.907
4242.9
3/4
256.825
5248.9
3/8
205.382
3356.7
5/8
231.300
4257.4
7/8
257.218
5264.9
V2
205.774
3369.6
3/4
231.692
4271.8
83.
257.611
5281.0
5/8
206.167
3382.4
7/8
232.085
4286.3
1/8
258.003
5297. 1
3/4
206.560
3395.3
74.
232.478
4300.8
1/4
258.396
5313.3
7/8
206.952
3408.2
1/8
232.871
4315.4
3/8
258.789
5329.4
66.
207.345
3421.2
1/4
233.263
4329.9
1/2
259.181
5345.6
1/8
207.738
3434.2
3/8
233.656
4344.5
5/8
259.574
5361.8
1/4
208.131
3447.2
1/2
234.049
4359.2
3/4
259.967
5378. 1
3/8
208.523
3460.2
5/8
234.441
4373.8
7/8
260.359
5394.3
1/2
208.916
3473.2
3/4
234.834
4388.5
83.
260.752
5410.6
5/8
209.309
3486.3
7/8
235.227
4403 . 1
1/8
261.145
5426.9
3/4
209.701
3499.4
75.
235.619
4417.9
l/4
261.538
5443.3
7/8
210.094
3512.5
1/8
236.012
4432.6
3/8
261.930
5459.6
67.
210.487
3525.7
1/4
236.405
4447.4
1/2
262.323
5476.0
1/8
210.879
3538.8
3/8
236.798
4462.2
5/8
262.716
5492.4
1/4
211.272
3552.0
V2
237.190
4477.0
3/4
263.108
5508.8
3/8
211.665
3565.2
5/8
237.583
-^491.8
7/8
263.501
5525.3
1/2
212.058
3578.5
3/4
237.976
4506.7
84.
263.894
5541.8
5/8
212.450
3591.7
7/8
238.368
4521.5
1/8
264.286
5558.3
3/4
212.843
3605.0
76c
238.761
4536.5
V4
264.679
5574.8
7/8
213.236
3618.3
1/8
239.154
4551.4
3/8
265.072
5591.4
68.
213.628
3631.7
V4
239.546
4566.4
1/2
265.465
5607.9
Vs
214.021
3645.0
3/8
239.939
4581.3
5/8
265.857
5624.5
V4
214.414
3658.4
1/2
240.332
4596.3
3/4
266.250
5641.2
3/8
214.806
3671.8
5/8
240.725
4611.4
7/8
266.643
5657.8
1/2
215.199
3685.3
3/4
241. 117
4626.4
85.
267.035
5674.5
5/8
215.592
3698.7
7/8
241.510
4641.5
1/8
267.428
5691.2
3/4
2 1 5 . 984
3712.2
77.
241.903
4656.6
V4
267.821
5707.9
7/8
216.377
3725.7
1/8
242.295
4671.8
3/8
268.213
'5724.7
69.
216.770
3739.3
1/4
242.688
4686.9
V2
268.606
5741.5
Vs
217.163
3752.8
3/8
243.081
4702.1
5/8
268.999
5758.3
V4
217.555
3766.4
1/2
243.473
4717.3
3/4
269.392
5775.1
3/8
2 1 7 . 948
3780.0
5/8
243.866
4732.5
7/8
269.784
5791.9
1/2
218.341
3793.7
3/4
244.259
4747.8
86.
270.177
5808.8
5/8
218.733
3807.3
7/8
244.652
4763.1
1/8
270.570
5825.7
3/4
219.126
3821.0
78.
245.044
4778.4
1/4
270.962
5842.6
7/8
219.519
3834.7
1/8
245.437
4793.7
3/8
271.355
5859.6
70.
219.911
3848.5
1/4
245.830
4809.0
1/9
271.748
5876.5
V8
220.304
3862.2
3/8
246.222
4824.4
5/J
272.140
5893.5
1/4
220.697
3876.0
i/2
246.615
4839.8
3/4
272.533
5910.6
3/8
221.090
3889.8
5/8
247.008
4855.2
7/8
272.926
5927.6
V2
221.482
3903.6
3/4
247 400
4870.7
87.
273.319
5944.7
5/8
221.375
3917.5
7/8
247.793
4886.2
Vs
273.711
5961.8
3/4
222.268
3931.4
79.
248. 186
4901.7
1/4
274. 104
5978.9
7/8
222 . 660
3945.3
!/8
248.579
4917.2
3/8
274.497
5996.0
71.
223.053
3959 2
1/4
248.971
4932.7
1/2
274.889
6013.2
V8
223 . 446
3973 1
3/8
249.364
4948.3
5/8
275.282
6030.4
1/4
223.838
3987.1
V2
249.757
4963.9
3/4
275.675
6047.6
CIRCUMFERENCES AND AREAS OF CIRCLES. 115
Diani
Circum.
Area.
Diam
Circum.
Area.
Diam
Circum.
Area.
877/s
276.067
6064.9
957/s
301.200
7219.4
130
408.41
13273.23
88.
276.460
6082.1
96.
301.593
7238.2
131
411.55
13478.22
1/8
276.853
6099.4
1/8
301.986
7257.1
132
414.69
13684.78
1/4
277.246
6116.7
1/4
302.378
7276.0
133
417.83
13892.91
3/8
277.638
6134.1
3/8
302.771
7294.9
134
420.97
1 4 1 02 . 6 1
1/2
278.031
6151.4
1/2
303. 164
7313.8
135
424. 12
14313.88
5/8
278.424
6168.8
5/8
303.556
7332.8
136
427.26
14526.72
3/4
278.816
6186.2
3/4
303.949
7351.8
137
430.40
!4741 . 14
7/8
279.209
6203 . 7
7/8
304.342
7370.8
138
433.54
14957.12
89.
279.602
6221.1
97.
304.734
7389.8
139
436.68
15174.68
V8
279.994
6238.6
1/8
305. 127
7408.9
140
439.82
15393.80
1/4
280.387
6256.1
1/4
305.520
7428.0
141
442.96
15614.50
3/8
280.780
6273.7
3/8
305.913
7447.1
142
446. 11
15836.77
Vz
281. 173
6291.2
1/2
306.305
7466.2
143
449.25
16060.61
5/8
281.565
6308.8
5/8
306.698
7485.3
144
452.39
16286.02
3/4
281.958
6326.4
3/4
307.091
7504.5
145
455.53
16513.00
7/8
282.351
6344.1
7/8
307.483
7523.7
146
458.67
16741.55
90.
282.743
6361.7
98.
307.876
7543.0
147
461.81
16971.67
Vs
283.136
6379.4
1/8
308.269
7562.2
148
464.96
17203.36
1/4
283.529
6397.1
1/4
308.661
7581.5
149
468.10
17436.62
3/8
283.921
64 1 4 . 9
3/8
309.054
7600.8
150
471.24
17671.46
1/2
284.314
6432.6
1/2
309.447
7620. 1
151
474.38
17907.86
5/8
284.707
6450.4
5/8
309.840
7639.5
152
477.52
18145.84
3/4
285.100
6468.2
3/4
310.232
7658.9
153
480.66
18385.39
7/8
285.492
6486.0
7/8
310.625
7678.3
154
483.81
18626.50
91.
285.885
6503.9
99.
311.018
7697.7
155
486.95
18869.19
Vs
286.278
6521.8
1/8
311.410
7717.1
156
490 . 09
19113.45
1/4
286.670
6539.7
1/4
311.803
7736.6
157
493.23
19359.28
3/8
287.063
6557.6
3/8
312. 196
7756.1
158
496.37
19606.68
V2
287.456
6575.5
1/2
312.588
7775.6
159
499.51
19855.65
5/8
287.848
6593.5
5/8
312.981
7795.2
160
502.65
20106. 19
3/4
288.241
6611.5
3/4
313.374
7814.8
161
505 . 80
20358.31
7/8
288.634
6629.6
7/8
313.767
7834.4
162
508.94
20611.99
93.
289.027
6647.6
100
314". 159
7854.0
163
512.08
20867.24
Vs
289.419
6665 . 7
101
317.30
8011 .85
164
515.22
21124.07
V4
289.812
6683.8
102
320.44
8171.28
165
518.36
21382.46
3/8
290.205
6701.9
103
323.58
8332.29
166
521.50
21642.43
V2
290.597
6720. 1
104
326.73
8494.87
167
524.65
21903.97
5/8
290.990
6738.2
105
329.87
8659.01
168
527.79
22167.08
3/4
291.383
6756.4
106
333.01
8824.73
169
530.93
22431.76
7/8
291.775
6774.7
107
336.15
8992.02
170
534.07
22698.01
93.
292.168
6792.9
108
339.29
9160.88
171
537.21
22965 . 83
V8
292.561
6811.2
109
342.43
9331.32
172
540.35
23235.22
V4
292.954
6829.5
110
345.58
9503.32
173
543.50
23506.18
3/8
293.346
6847.8
111
348.72
9676.89
174
546.64
23778.71
1/2
293.739
6866.1
112
351.86 >
9852.03
175
549.78
24052.82
5/8
294. 132
6884.5
113
355.00
0028.75
176
552.92
24328.49
3/4
294.524
6902 . 9
114
358.14
0207.03
177
556.06
24605 . 74
7/8
294.917
6921.3
115
361.28
0386.89
178
559.20
24884.56
94.
295.310
6939.8
116
364.42
0568.32
179
562.35
25164.94
1/8
295 . 702
6958.2
117
367.57
0751.32
ISO
565 . 49
25446.90
1/4
296.095
6976.7
118
370.71
0935.88
181
568.63
25730.43
3/8
296.488
6995.3
119
373.85
1122.02
182
571.77
26015.53
1/2
296.881
701.3.8
120
376.99
1309.73
183
574.91
26302.20
5/8
297.273
7032.4
121
380.13
1499.01
184
578.05
26590.44
3/4
297.666
7051.0
122
383.27
1689.87
185
581.19
26880.25
7/8
298.059
7069.6
123
386.42
1882.29
186
584.34
27171.63
95.
298.451
7088.2
124
389.56
2076.28
187
587.48
27464.59
1/8
298.844
7106.9
125
392.70
2271.85
188
590.62
27759.11
1/4
299.237
7125.6
126
395.84
2468.98
189
593 . 76
28055.21
3/8
299.629
7144.3
127
398.98
2667.69
190
596.90
28352.87
1/2
300.022
7163.0
128
402. 12
2867.96
191
600.04
28652. 11
5/8
300.415
7181.8
129
405.27
3069.81
192
603.19
28952.92
3/4
• n i
300.807
7200.6
116
MATHEMATICAL TABLES.
Diam
Circum
Area.
Diam
Circum
Area.
Diam
Circum.
Area.
193
606.33
29255.30
260
816.81
53092.92
327
1027.30
83961.84
194
609.47
29559.25
261
819.96
53502.11
328
1030.44
84496.28
195
612.61
29864.77
262
823.10
53912.87
329
1033.58
85012.28
196
615.75
30171.86
263
826.24
54325. 21
330
1036.73
85529.86
197
618.89
30480.52
264
829.38
54739.11
331
1039.87
86049.01
193
622.04
30790.75
265
832.52
55154.59
332
1043.01
86569.73
199
625. 18
31102.55
266
835.66
55571.63
333
1046. 15
87092.02
200
628.32
31415.93
267
838.81
55990.25
334
1049.29
87615.88
201
631.46
31730.87
268
841.95
56410.44
335
1052.43
88141.31
202
634.60
32047.39
269
845.09
56832.20
336
1055.58
88668.31
203
637.74
32365.47
270
848.23
57255.53
337
1058.72
89196.88
204
640.88
32685. 13
271
851.37
57680.43
338
1061 .86
89727.03
205
644.03
33006.36
272
854.51
58106.90
339
1065.00
90258.74
206
647. 17
33329. 16
273
857.65
58534.94
340
1068. 14
90792.03
207
650.31
33653.53
274
860.80
58964.55
341
1071.28
91326.88
203
653.45
33979.47
275
863 . 94
59395.74
342
1074.42
91863.31
209
656.59
34306.98
276
867.08
59828.49
343
1077.57
92401.31
210
659.73
34636.06
277
870.22
60262.82
344
1080.71
92940.88
211
662.88
34966.71
278
873.36
60698.71
345
1083.85
93482.02
212
666.02
35298.94
279
876.50
61136. 18
346
1086.99
94024.73
213
669. 16
35632.73
280
879.65
61575.22
347
1090. 13
94569.01
214
672.30
35968.09
281
882.79
62015.82
348
1093.27
95114.86
215
675.44
36305.03
282
885.93
62458.00
349
1096.42
95662.28
216
678.58
36643.54
283
889.07
62901.75
350
1099.56
96211.28
217
681.73
36983.61
284
892.21
63347.07
351
1102.70
96761.84
218
684.87
37325.26
285
895.35
63793.97
352
1105.84
97313.97
219
688.01
37668.48
286
898.50
64242.43
353
1108.98
97867.68
230
691. 15
38013.27
287
901.64
64692.46
354
1112. 12
98422.96
221
694.29
38359.63
288
904.78
65144.07
355
1115.27
98979.80
222
697.43
38707.56
289
907.92
65597.24
356
1118.41
99538.22
223
700.58
39057.07
290
911.06
66051.99
357
1121.55
100098.21
224
703.72
39408. 14
291
914.20
66508.30
358
1124.69
100659.77
225
706.86
39760.78
292
917.35
66966. 19
359
1127.83
101222.90
226
710.00
401 15.00
293
920.49
67425.65
360
1130.97
101787.60
227
713. 14
40470.78
294
923.63
67886.68
361
1134.11
102353.87
228
716.28
40828. 14
295
926.77
68349.28
362
1137.26
102921.72
229
719.42
41187.07
296
929.91
68813.45
363
1140.40
103491. 13
230
722.57
41547.56
297
933.05
69279. 19
364
1143.54
1 04062 . 1 2
231
725.71
41909.63
298
936. 19
69746.50
365
1146.68
104634.67
232
728.85
42273.27
299
939.34
70215.38
366
1149.82
105208.80
233
73 1 . 99
42638.48
300
942.48
70685.83
367
1152.96
105784.49
234
735.13
43005.26
301
945.62
71157.86
368
1156.11
106361.76
235
738.27
43373.61
302
948.76
71631.45
369
1159.25
106940.60
236
741.42
43743.54
303
951.90
72106.62
370
1162.39
107521.01
237
744.56
44115.03
304
955.04
72583.36
371
1165.53
108102.99
238
747.70
44488.09
305
958. 19
73061.66
372
1 168.67
108686.54
239
750.84
44862.73
306
961.33
73541 .54
373
1171.81
109271.66
240
753.98
45238.93
307
964.47
74022.99
374
1174.96
109858.35
241
757. 12
45616.71
308
967.61
74506.01
375
1178.10
1 10446.62
242
760.27
45996.06
309
970.75
74990.60
376
1181.24
111036.45
243
763.41
46376.98
310
973.89
75476.76
377
1184.33
1 1 1627.86
244
766.55
46759.47
311
977.04
75964.50
378
1187.52
112220.83
245
769.69
47143.52
312
980. 18
76453.80
379
1190.66
112815.38
246
772. S3
47529. 16
313
983.32
76944.67
380
1193.81
113411.49
247
775.97
47916.36
314
986.46
77437.12
381
1196.95
114009.18
248
779. 11
48305.13
315
989.60
77931. 13
382
1200.09
1 14608.44
249
782.26
48695.47
316
992 . 74
78426.72
383
1203.23
115209.27
250
785.40
49087.39
317
995.88
78923.88
384
1206.37
115811;67
251
788.54
49480.87
318
999.03
79422.60
385
1209.51
116415.64
252
791.68
49875.92
319
1002.17
79922 . 90
386
1212.65
117021.18
253
794.82
50272.55
320
1005.31
80424.77
387
1215.80
117628.30
254
797.96
50670.75
321
1008.45
80928.21
388
1218.94
18236.98
255
801. 11
51070.52
322
1011.59
81433.22
389
1222.08
18847.24
256
804.25
51471.85
323
1014.73
81939.80
390
1225.22
19459.06
257
807.39
51874.76
324
1017.88
82447.96
391
1228.36
20072.46
258
810.53
52279.24
325
1021.02
82957.68
392
1231.50
20687.46
259
813.67
52685 . 29
326
1024. 16
83468.98
393
1234.65
21303.96
CIRCUMFERENCES AND AREAS OF CIRCLES.
117
Diam
Circum
Area.
Diam
Circum
Area.
Diam
Circum
Area.
"394"
1237.79
121922.07
461
1448.27
166913.60
528
1658.76
218956.44
395
1240.93
122541.75
462
1451.42
167638.53
529
1661.90
219786.61
396
1244.07
123163.00
463
1454.56
168365.02
530
1665.04
220618.34
397
1247.21
123785.82
464
1457.70
1 69093 . 08
531
1668. 19
221451.65
398
1250.35
124410.21
465
1460.84
169822.72
532
1671.33
222286.53
399
1253.50
125036. 17
466
1463.98
170553.92
533
1674.47
223122.98
400
1256.64
125663.71
467
1467. 12
171286.70
534
1677.61
223961.00
401
1259.78
126292.81
468
1470.27
172021.05
535
1680.75
224800.59
402
1262.92
126923.48
469
1473.41
172756.97
536
1683.89
225641.75
403
1266.06
127555.73
470
1476.55
173494.45
537
1687.04
226484.48
404
1269.20
128189.55
471
1479.69
174233.51
538
1690.18
227328.79
405
1272.35
128824.93
472
1482.83
174974. 14
539
1693.32
228174.66
406
1275.49
129461 .89
473
1485.97
175716.35
540
1696.46
229022. 10
407
1278.63
130100.42
474
1489.11
176460.12
541
1699.60
229871.12
408
1281.77
130740.52
475
1492.26
177205.46
542
1702.74
230721.71
409
1284.91
131382. 19
476
1495.40
177952.37
543
1705.88
231573.86
410
1288.05
132025.43
477
1498.54
178700.86
544
1709.03
232427.59
411
1291. 19
132670.24
478
1501.68
179450.91
545
1712.17
233282.89
412
1294.34
133316.63
479
1504.82
180202.54
546
1715.31
234139.76
413
1297.48
133964.58
480
1507.96
180955.74
547
1718.45
234998.20
414
1300.62
134614.10
481
1511.11
181710.50
548
1721.59
235858.21
415
1303.76
135265.20
482
1514.25
182466.84
549
1724.73
236719.79
416
1306.90
135917.86
483
1517.39
183224.75
550
1727.88
237582.94
417
1310.04
136572.10
484
1520.53
183984.23
551
1 73 1 . 02
238447.67
418
1313.19
137227.91
485
1523.67
184745.28
552
1734.16
239S13.96
419
1316.33
137885.29
486
1526.81
185507.90
553
1737.30
240181.83
420
1319.47
138544.24
487
1529.96
186272.10
554
1740.44
241051.26
421
1322.61
139204.76
488
1533.10
187037.86
555
1743.58
241922.27
421
1325.75
139866.85
489
1536.24
187805.19
556
1746.73
242794.85
423
1328.89
140530.51
49O
1539.38
188574.10
557
1749.87
243668.99
424
1332.04
141195.74
491
1542.52
169344.5.
558
1753.01
244544.71
425
1335. 18
141862.54
492
1545.66
1901 16.62
559
1756.15
245422.00
426
1338.32
142530.92
493
1548.81
190890.2
560
1759.29
246300.86
427
1341.46
143200.86
494
1551.95
191665.43
561
1 762 . 43
247181.30
428
1344.60
143872.38
495
1555.09
192442. 18
562
1765.58
248063.30
429
1347.74
1 44545. 46
496
1558.23
193220.51
563
1768.72
248946.87
430
1350.88
145220. 12
497
1561.37
194000.41
564
1771 .86
249832.01
431
1354.03
145896.35
498
1564.51
194781.89
565
1775.00
250718.73
432
1357.17
146574.15
499
1567.65
195564.93
566
1778.14
251607.01
433
1360.31
147253.52
500
1570.80
196349.54
567
1781.28
252496.87
434
1363.45
147934.46
501
1573.94
197135.72
568
1784.42
253388.30
435
1366.59
148616.97
502
1577.03
197923.48
569
1787.57
254281.29
436
1369.73
149301.05
503
1580.22
198712.80
570
1790.71
255175.86
437
1372 88
149986.70
504
1583.36
199503.70
571
1793.85
256072.00
438
1376.02
150673.93
505
1586.50
200296.17
572
1796.99
256969.71
439
1379. 16
151362.72
506
1589.65
201090.20
573
1800. 13
257868.99
440
1382.30
152053.08
507
1592.79
201885.81
574
1803.27
258769.85
441
1385.44
152745.02
508
1595.93
202682.99
575
1806.42
259672.27
442
1388.58
153438.53
509
1599.07
203481.74
576
1809.56
260576.26
443
1391.73
154133.60
510
1602.21
204282.06
577
1812.70
261481.83
444
1394.87
154830.25
511
1605.35
205083.95
578
1815.84
262388.96
445
1398.01
155528.47
512
1608.50
205887.42
579
1818.93
263297.67
446
1401. 15
156228.26
513
1611.64
206692.45
580
1822.12
264207.94
447
1404.29
156929.62
514
1614.78
207499.05
581
1825.27
265119.79
448
1407.43
157632.55
515
1617.92
208307.23
582
1828.41
266033.21
449
1410.58
158337.06
516
1 62 1 . 06
209116.97
583
1831.55
266948.20
450
1413.72
159043.13
517
1624.20
209928.29
584
1834.69
267864.76
451
1 4 1 6 . 86
159750.77
518
1627.34
210741.18
585
1837.83
268782.89
452
1420.00
160459.99
519
1630.49
211555.63
586
1840.97
269702.59
453
1423.14
161170.77
520
1633.63
212371.66
587
1844.11
270623.86
454
1426.28
161883. 13
521
1636.77
213189.26
588
1847.26
271546.70
455
1429.42
162597.05
522
1639.91
214008.43
589
1850.40
272471. 12
456
1432.57
163312.55
523
1643.05
214829. 17
59O
1853.54
273397.10
457
1435.71
164029.62
524
1646. 19
215651.49
591
1856.68
274324.66
458
1438 85
164748 26
525
1649.34
216475.37
592
1859.82
275253.78
459
460
1441.99
1445.13
165468.47
166190.25
526
527
1652.48
1655.62
217300.82
218127.85
593
594
1862.96 276184.48
1866.1l'277l16.75
118
MATHEMATICAL TABLES.
Diam
Circum.
Area.
Diam
Circum,
Area.
Diam
Circum
Area.
595
1869.25
278050.58
663
2082.88
345236.69
731
2296.50
419686. 13
596
1872.39
278985.99
664
2086.02
346278.91
732
2299.65
420835 19
597
1875.53
279922.97
665
2089.16
347322.70
733
2302.79
421985* 79
598
1878.67
280861.52
666
2092.30
348368.07
734
2305.93
423137.97
599
1881.81
281801.65
667
2095.44
349415.00
735
2309.07
424291.72
600
1884.96
282743.34
668
2098.58
350463.51
736
2312.2
425447.04
601
1888. 10
283686.60
669
2101.73
351513.59
737
2315.35
426603 . 94
602
1891.24
284631.44
670
2104.87
352565.24
738
2318.50
427762.40
603
1894.38
285577.84
671
2108.01
353618.45
739
2321.64
428922.43
604
1897.52
286525.82
672
2111.15
354673.24
740
2324.78
430084.03
605
1900.66
287475.36
673
2114.29
355729.60
741
2327.92
431247.21
606
1903.81
288426.48
674
2117.43
356787.54
742
233 1 . 06
432411.95
607
1906.95
289379.17
675
2120.58
357847.04
743
2334.20
433578.27
608
1910.09
290333.43
676
2123.72
358908.11
744
2337.34
434746. \6
609
1913.23
291289.26
677
2126.86
359970.75
745
2340.49
435915.62
610
1916.37
292246.66
678
2130.00
361034.97
746
2343.63
437086.64
611
1919.51
293205.63
679
2133.14
362100.75
747
2346.77
438259.24
612
1922.65
294166.17
680
2136.28
363168.11
748
2349.91
439433.41
613
1925.80
295128.28
681
2139.42
364237.04
749
2353.05
440609.16
614
1928.94
296091.97
682
2142.57
365307.54
750
2356.19
441786.47
615
1932.08
297057.22
683
2145.71
366379.60
751
2359.34
442965.35
616
1935.22
298024.05
684
2148.85
367453.24
752
2362.48
444145.80
617
1938.36
298992.44
685
2151.99
368528.45
753
2365.62
445327.83
618
1941.50
299962.41
686
2155.13
369605.23
754
2368.76
446511.42
619
1944.65
300933.95
687
2158.27
370683.59
755
2371.90
447696.59
620
1947.79
301907.05
688
2161.42
371763.51
756
2375.04
448883.32
621
1950.93
302881.73
689
2164.56
372845.00
757
2378.19
450071.63
622
1954.07
303857.98
690
2167.70
373928.07
758
2381.33
451261.51
623
1957.21
304835.80
691
2170.84
375012.70
759
2384.47
452452.96
624
1960.35
305815.20
692
2173.98
376098.91
760
2387.61
453645.98
625
1963.50
306796.16
693
2177.12
377186.68
761
2390.75
454840.57
626
1966.64
307778.69
694
2180.27
378276.03
762
2393.89
456036.73
627
1969.78
308762.79
695
2183.41
379366.95
763
2397.04
457234.46
628
1972.92
309748.47
696
2186.55
380459.44
764
2400.18
458433.77
629
1976.06
310735.71
697
2189.69
381553.50
765
2403.32
459634.64
630
1979.20
311724.53
698
2192.83
382649.13
766
2406.46
460837.08
631
1982.35
312714.92
699
2195.97
383746.33
767
2409.60
462041.10
632
1985.49
313706.88
700
2199.11
384845.10
768
2412.74
463246.69
633
1988.63
314700.40
701
2202.26
385945.44
769
2415.88
464453.84
634
1991.77
315695.50
702
2205.40
387047.36
770
2419.03
465662.57
635
1994.91
316692.17
703
2208.54
388150.84
771
2422.17
466872.87
636
1998.05
317690.42
704
2211.68
389255.90
772
2425.31
468084.74
637
2001. 19
318690.23
705
2214.82
390362.52
773
2428.45
469298. 18
638
2004.34
319691.61
706
2217.96
391470.72
774
2431.59
470513.19
639
2007.48
320694.56
707
2221.11
392580.49
775
2434.73
471729.77
640
2010.62
321699.09
708
2224.25
393691.82
776
2437.88
472947.92
641
2013.76
322705.18
709
2227.39
394804.73
777
2441.02
474167.65
642
2016.90
323712.85
710
2230.53
395919.21
778
2444.16
475388.94
643
2020.04
324722.09
711
2233.67
397035.26
779
2447.30
476611.81
644
2023. 19
325732.89
712
2236.81
398152.89
780
2450.44
477836.24
645
2026.33
326745.27
713
2239.96
399272.08
781
2453.58
479062.25
646
2029.47
327759.22
714
2243.10
400392.84
782
2456.73
480289.83
647
2032.61
328774.74
715
2246.24
401515.18
783
2459.87
481518.97
648
2035.75
329791.83
716
2249.38
402639.08
784
2463.01
482749.69
649
2038.89
330810.49
717
2252.52
403764.56
785
2466.15
483981.98
650
2042.04
331830.72
718
2255.66
404891.60
786
2469.29
485215.84
651
2045. 18
332852.53
719
2258.81
406020.22
787
2472.43
48645 1 . 28
652
2048.32
333875.90
720
2261.95
407150.41
788
2475.58
487688.28
653
2051.46
334900.85
721
2265 . 09
408282.17
789
2478.72
488926.85
654
2054.60
335927.36
722
2268.23
409415.50
790
2481.86
490166.99
655
2057.74
336955.45
723
2271.37
410550.40
791
2485.00
491408.71
656
2060.88
337985.10
724
2274.51
411686.87
792
2488.14
492651.99
657
2064.03
339016.33
725
2277.65
412824.91
793
2491.28
493896.85
. 658
2067.17
340049.13
726
2280.80
413964.52
794
2494.42
495143.28
659
2070.31
341083.50
727
2283.94
415105.71
795
2497.57
496391.27
660
2073.45
342119.44
728
2287.085416248.46
796
2500.71
497640.84
661
2076.59
343156.95
729
2290.22
417392.79
797
2503.85
498891.98
£62
2079.73 344196.03
730 2293.36
418538.68
798
2506.99500144.69
CIRCUMFERENCES AND AREAS OP CIRCLES. 119
Diam
Circum.
Area.
Diam. I Circum.
Area.
Diam
Circum. 1 Area.
799
2510.13
501398.97
867
2723.76
590375.16
935
2937.39
686614.71
8OO
2513.27
502654.82
868
2726.90
591737.83
936
2940.53
688084. 19
801
2516.42
503912.25
869
2730.04
593102.06
937
2943.67
689555.24
802
2519.56
505171.24
870
2733.19
594467.87
938
2946.81
691027.86
803
2522.70
50643 1 . 80
871
2736.33
595835.25
939
2949.96
692502 05
804
2525.84
507693.94
872
2739.47
597204.20
940
2953.10
693977.82
805
2528.98
508957.64
873
2742.61
598574.72
941
2956.24
695455. 15
806
2532.12
510222.92
874
2745.75
599946.81
942
2959.38
696934.06
807
2535.27
511489.77
875
2748.89
601320.47
943
2962.52
698414.53
808
2538.41
512758.19
876
2752.04
602695.70
944
2965 . 66
699896.58
809
2541.55
514028.18
877
2755.18
604072.50
945
2968.81
701380.19
810
2544.69
515299.74
878
2758.321605450.88
946
2971.95
702865 38
811
2547.83
516572.87
879
2761.46
606830.82
947
2975.09
704352.14
812
2550.97
517847.57
88O
2764.60
608212.34
948
2978.23
705840 47
813
2554.11
519123.84
881
27 '67.7 'A
609595.42
949
2981.37
707330 37
814
2557.26
520401.68
882
2770.88
610980.08
05O
2984.51
708821.84
815
2560.40
521681.10
883
2774.03
612366.31
951
2987.65
7 1 03 1 4 . 88
816
2563.54
522962.08
884
2777. 17
613754.11
952
2990.80
711809.50
817
2566.68
524244.63
885
2780.31
615143.48
953
2993 . 94
713305.68
818
2569.82
525528.76
886
2783.45
616534.42
954
2997.08
714803.43
819
2572,96
526814.46
887
2786.59
617926.93
955
3000.22
716302.76
820
2576.11
528101.73
888
2789.73
619321.01
956
3003.36
717803.66
821
2579.25
529390.56
889
2792.88
620716.66
957
3006.50
719306.12
822
2582.39
530680.97
890
2796.02
622113.89
958
3009.65
720810.16
823
2585.53
531972.95
891
2799.16
623512.68
959
3012.79
722315.77
824
2588.67
533266.50
892
2802.30
624913.04
960
3015.93
723822.95
825
2591.81
534561.62
893
2805.44
626314.98
961
3019.07
725331.70
826
2594.96
535858.32
894
2808.58
627718.49
962
3022.21
726842.02
827
2598.10
537156.58
895
2811.73
629123.56
963
3025.35
728353.91
828
2601.24
538456.41
896
2814.87
630530.21
964
3028.50
729867.37
829
2604.38
539757.82
897
2818.01
631938.43
965
3031.64
731382.40
830
2607.52
541060.79
898
2821.15
633348.22
966
3034.78
732899.01
831
2610.66
542365.34
899
2824.29
634759.58
967
3037.92
734417.18
832
2613.81
543671.46
900
2827.43
636172.51
968
3041.06
735936.93
833
2616.95
544979.15
901
2830.58
637587.01
969
3044.20
737458.24
834
2620.09
546288.40
902
2833.72
639003.09
970
3047.34
738981.13
835
2623.23
547599.23
903
2836.86
640420.73
971
3050.49
740505.59
836
2626.37
548911.63
904
2840.00
641839.95
972
3053.63
74203 1 . 62
837
2629.51
550225.61
905
2843.14
643260.73
973
3056.77
743559.22
838
2632.65
551541.15
906
2846.28
644683 . 09
974
3059.91
745088.39
839
2635.80
552858.26
907
2849.42
646107.01
975
3063.05
746619. 13
840
2638.94
554176.94
908
2852.57
647532.51
976
3066.19
748151.44
841
2642.08
555497.20
909
2855.71
648959.58
977
3069.34
749685.32
842
2645.22
556819.02
910
2858.85
650388.22
978
3072.48
751220.78
843
2648.36
558142.42
911
2861.99
651818.43
979
3075.62
752757.80
844
2651.50
559467.39
912
2865.13
653250.21
98O
3078.76
754296.40
845
2654.65
560793.92
913
2868.27
654683.56
981
3081.90
755836.56
846
2657.79
562122.03
914
2871.42
656118.48
982
3085.04
757378.30
847
2660.93
563451.71
915
2874.56
657554.98
983
3088.19
758921.61
848
2664.07
564782.96
916
2877.70
658993 . 04
984
3091 .33
760466.48
849
2667.21
566115.78
917
2880.84
660432.68
985
3094.47
762012.93
850
2670.35
567450.17
918
2883.98
661873.88
986
3097.61
763560.95
851
2673.50
568786.14
919
2887.12
663316.66
987
3100.75
765110.54
852
2676.64
570123.67
92O
2890.27
664761.01
988
3103.89
766661.70
853
2679.78
571462.77
921
2893.41
666206.92
989
3107.04
768214.44
854
2682.92
572803.45
922
2896.55
667654.41
99O
3110.18
769768.74
855
2686.06
574145.69
923
2899.69
669103.47
991
3113.32
771324.61
856
2689.20
575489.51
924
2902.83
670554.10
992
3116.46
772882.06
857
2692.34
576834.90
925
2905.97
672006.30
993
3119.60
774441.07
858
2695.49
578181.85
926
2909.11
673460.08
994
3122.74
776001.66.
859
2698.63
579530.38
927
2912.26
674915.42
995
3125.88
777563.82
860
861
2701.77
2704.91
580880.48
582232.15
928
929
2915.40676372.33
2918.54 677830.82
996
997
3129.03
3132.17
779127.54
780692 84
862
2708.05
583585.39
930
2921.68:679290.87
998
3135.31
782259.7?
863
2711.19
584940.20
931
2924.82 680752.50
999
3138.45
783828 15
864
2714.34
586296.59
932
2927.96682215.69
1000
3141.59
785398.16
865
2717.48
587654.54
933
2931 . 11 683680.46
866
m
2720.62
589014.07
934
2934.25 685146.80
120 CIRCUMFERENCE OF CIRCLES, FEET AND INCHED
— ^OG — <*JiN.OenNOOe^\NOONcNmoo^~moo — ^ t>. o m r^ o m
— — — CN CN «N en
•1-— OOONooh-.NOm-'^-eneN — OONOOooi^NOin-feneN — o ON~OO r „ - ,
rNNOenot^'3- — ooineNC
V in t>.' a^ — o CN
•CNmoo — •^•oo — ^4
rNOoeN-<rmi>.ONOOcNcnmt>.ONOc
-
^B — oo in CN ON vo co o r>. •* — oo in C
^jesmoo — •<j-f>.O'<j-t>.oen\ooNeNNOONeNinoo — -<roo — •«j-h>.oenNooenNOONeN
p^ mmmi r>,r>, oo ONONQNONO
r;oNONoooooooooooooooooooooor>.r>«rs«.r>^r>.t>.r>»r>»r<«t>«rs».NONONONONONONONONO
£^*^3^*^w^^^*^or^^"«^«N^^f<\o^^^^^^^Ndf^
^>— ^w--^r>.ocAvOoc
-p — .— — CN CN CN en e
Ninoo-- -«!rt>»O'rr^OfAvDONCN\ooNC
m in o vo so i>« t>« t>« oo oo oo oo ON ON ON
N — ooNoooor>«NO>n^tTncN — ON
cnmcNCNCNCNCNCNCNCNCNCN —
-
voooo c
o^Ni
•OOOO
£ i>, -r — oo i
'
oNoot^NOin-^-mfN — — ooNoot>«NOin-«j-rncN'— o
ONONONONONONONONONONONOOOOOOOOOOOOOOOOOOOOr.»
NO m or*.-* — oo m CN ON so en o t>. •* — oo >n CN ON NO en o
' ' ' ' '
en vn rN oo' o' o «— en «n r>* oo' o o' — en in NO oc i o — — en m NO oo' o — — en T' NO' oc i o
ocnr>iOfnNOONCNinoNCNmoo — -*r>.o-^-t>.oenvOONCNvOONCNino —
— — — CN CN CN CN en en en -«r if -^- m m m NO NO NO t>. i>. t>« r>. oo oo oo ON ON ON o
< —
ONONONONOu^u
O en o r^ ^ •— o
' ' *
'tfi^cncnf
-— oo in CN
*
R m CN ON NO en o r>, 'T •— oo in CN ON NO en o t>. -* — oo m CN ON NO en o t>,
o CN en m t>«' o' o' o* CN en m r>«' oo o o' CN en m' t^.' oo* o' o' — en in r>. oo' o o — en m NO
o — moo — -<i
*-
JeNCNCNCNCNCN — — — — — •— — — — — — OOOOOOOOOOOONQNONC
ON* — o* CN ^ m r>.° ON — o CN ^' m r> ON o* o CN *r >n t>» ON o* o* CN en m t>» oo* o o CN en
+J fr>t>'__ ~-~- cNCNrNjenenen^r^j--^-minmNONONONOt>«t>»r^oooooooNO^CNO
ooin<NONNOenor>.-«r —
' — — enn-Noooo — •— en
NCNmoo — moo — •«t-r>.ocnr>«.oenNOONCN»nON<N«noo — 3-^ — ^r^o
— — — CN CN CN en en en -<r ^n- >n in m in NO NO NO t>. t>. t>, oo oo oo ON ON ON o
AREAS OF THE SEGMENTS OF A CIRCLE.
121
AREAS OF THE SEGMENTS OF A CIRCLE.
(Diameter=l; Rise or Height in parts of Diameter being given.)
RULE FOR USE OF THE TABLE. — Divide the rise or height of the segment
by the diameter. Multiply the area in the table corresponding to the
quotient thus found by the square of the diameter.
// the segment exceeds a semicircle its area is area of circle — area of seg-
ment whose rise is (diarn. of circle — rise of given segment).
Given chord and rise, to find diameter. Diam. = (square of half chord -*-
rise) + rise. The half chord is a mean proportional between the two parts .
into which the chord divides the diameter which is perpendicular to it.
Rise
-f-
Diam.
Area.
Rise
^
Diam.
Area.
Rise
Diam.
Area.
Rise
Diam.
Area.
Rise
-i-
Diam.
Area.
.001
.00004
.054
•01646
.107
.04514
.16
.08111
.213
.12235
.002
.00012
.055
.01691
.108
.04576
.161
.08185
.214
.12317
.003
.00022
.056
.01737
.109
.04638
.162
.08258
.215
.12399
.004
.00034
.057
.01783
.11
.04701
.163
.08332
.216
.12481
.005
.00047
.058
.01830
.111
.04763
.164
.08406
.217
.12563
.006
.00062
.059
.01877
.112
.04826
.165
.08480
.218
.12646
.007
.00078
.06
.01924
.113
.04889
.166
.08554
.219
.12729
.008
.00095
.061'
.01972
.114
.04953
.167
.08629
.22
.12811
.009
.00113
.062
.02020
.115
.05016
.168
.08704
.221
.12894
.01
.00133
.063
.02068
.116
.05080
.169
.08779
.222
.12977
.011
.00153
.064
.02117
.117
.05145
.17
.08854
.223
.13060
.012
.00175
.065
.02166
.118
.05209
.171
.08929
.224
.13144
.013
.00197
.066
.02215
.119
.05274
.172
.09004
.225
.13227
.014
.0022
.067
.02265
.12
.05338
.173
.09080
.226
.13311
.015
.00244
.068
.02315
.121
.05404
.174
.09155
.227
.13395
.016
.00268
.069
.02366
.122
.05469
.175
.0923 1
.228
.13478
.017
.00294
.07
.02417
.123
.05535
.176
.09307
.229
.13562
.018
.0032
.071
.02468
.124
.05600
.177
.09384
.23
.13646
.019
.00347
.072
.02520
.125
.05666
.178
.09460
.231
.13731
.02
.00375
.073
.02571
.126
.05733
.179
.09j37
.232
.13815
.021
.00403
.074
.02624
.127
.05799
.18
.09613
.233
.13900
.022
00432
.075
.02676
.128
.05866
.181
.09690
.234
.13984
.023
.00462
.076
.02729
.129
.05933
.182
.09767
.235
.14069
.024
.00492
.077
.02782
.13
.06000
.183
.09845
.236
.14154
.025
.00523
.078
.02836
.131
.06067
.184
.09922
.237
.14239
.026
.00555
.079
.02889
.132
.06135
.185
.10000
.238
.14324
.027
.00587
.08
.02943
.133
.06203
.186
.10077
.239
.14409
.028
.00619
.081
.02998
.134
.06271
.187
.10155
.24
.14494
,029
.00653
.082
.03053
.135
.06339
.188
.10233
.241
.14580
.03
.00687
.083
.03108
.136
.06407
.189
.10312
.242
.14666
.031
.00721
.084
.03163
.137
.06476
.19
.10390
.243
.14751
.032
.00756
.085
.03219
.138
.06545
.191
.10469
.244
.14837
.033
.00791
.086
.03275
.139
.06614
.192
.10547
.245
.14923
.034
.00827
.087
.03331
.14
.06683
.193
.10626
.246
.15009
.035
.00864-
.088
.03387
.141
.06753
.194
.10705
.247
.15095
.036
.00901
.089
.03444
.142
.06822
.195
.10784
.248
.15182
.037
.00938
.09
.03501
.143
.06892
.196
.10864
.249
.15268
.038
.00976
091
.03559
.144
.06963
.197
.10943
.25
.15355
.039
.01015
.092
.03616
.145
.07033
.198
.11023
.251
.15441
.04
.01054
.093
.03674
.146
.07103
.199
.11102
.252
.15528
.041
.01093
.094
.03732
.147
.07174
.2
.11182
.253
.15615
.042
.01133
.095
.03791
.148
.07245
.201
.11262
.254
.15702
.043
.01173
.096
.03850
.149
.07316
.202
.11343
.255
.15789
.044
.01214
.097
.03909
.15
.07387
.203
.11423
.256
.15876
.045
.01255
.098
.03968
.151
.07459
.204
.11504
.257
.15964
.046
.01297
.099
.04028
.152
.07531
.205
.11584
.258
.16051
.047
.01339
|
.04087
.153
.07603
.206
.11665
.259
.16139
.048
.01382
J01
.04148
.154
.07675
.207
. 1 1 746
.26
.16226
.049
.01425
.102
.04208
.155
.07747
.208
.11827
.261
.16314
.05
.01468
.103
.04269
.156
.07819
.209
.11908
.262
.16402
.051
.01512
.104
.04330
.157
.07892
.21
.11990
.263
.16490
.052
.01556
.105
.04391
.158
.07965
.211
.12071
.264
.16578
.053
.01601
.106
.04452
.159
.08038
.212
.12153
.265
.16666
122
MATHEMATICAL TABLES,
Rise
•4-
Diam.
Area.
Rise
Diam.
Area.
Rise
•*-
Diam.
Area.
Rise
•*•
Diana.
Area.
Rise
•*•
Diam.
Area.
.266
.16755
.313
.21015
.36
.25455
.407
.30024
.454
.34676
.267
.16643
.314
.21108
.361
.25551
.408
.30122
.455
-.34776
.268
.16932
.315
.21201
.362
.25647
.409
.30220
.456
.34876
.269
17020
316
.21294
.363
.25743
.41
.30319
.457
.34975
.27
.17109
.317
.21387
.364
.25839
.411
.30417
.458
.35075
.271
.17198
.318
.21480
.365
.25936
.412
.30516
.459
.35175
.272
.17287
.319
.21573
.366
.26032
.413
.30614
.46
.35274
.273
.17376
.32
.21667
.367
.26128
.414
.30712
.461
.35374
.274
.17465
.321
.21760
.368
.26225
.415
.30811
.462
.35474
.275
.17554
.322
.21853
.369
.26321
.416
.30910
.463
.35573
.276
.17644
.323
,21947
.37
.26418
.417
.3 1 008
.464
.35673
.277
.17733
.324
.22040
.37!
.265 1 4
.418
.31107
.465
.35773
.278
.17823
.325
.22134
.372
.26611
.419
.31205
.466
.35873
.279
.17912
.326
.22228
.373
.26708
.42
.31304
.467
.35972
.28
.18002
.327
.22322
.374
.26805
.421
.31403
.468
.36072
.281
.18092
.328
.22415
.375
.26901
.422
.31502
.469
.36172
.282
.18182
.329
.22509
.376
.26998
.423
.31600
.47
.36272
.283
.18272
.33
.22603
.377
.27095
.424
.31699
.471
.36372
.284
.18362
.331
.22697
.378
.27192
.425
.3 1 798
.472
.36471
.285
.18452
.332
.22792
.379
.27289
.426
.31897
.473
.36571
.286
.18542
.333
.22886
.38
.27386
.427
.31996
.474
.36671
.287
.18633
.334
.22980
.381
.27483
.428
.32095
.475
.36771
.288
.18723
.335
.23074
.382
.27580
.429
.32194
.476
.36871
.289
.18814
.336
.23169
.383
.27678
.43
.32293
.477
.36971
.29
.18905
.337
.23263
.384
.27775
.431
.32392
.478
.37071
.291
.18996
.338
.23358
.385
.27872
.432
.32491
.479
.37171
.292
.19086
.339
.23453
.386
.27969
.433
.32590
.48
.37270
293
.19177
.34
.23547
.387
.28067
.434
.32689
.481
.37370
294
.19268
.341
.23642
.388
.28164
.435
.32788
.482
.37470
.295
.19360
.342
.23737
.389
.28262
.436
.32887
.483
.37570
.296
.19451
.343
.23832
.39
.28359
.437
.32987
.484
.37670
.297
.19542
.344
.23927
.391
.28457
.438
.33086
.485
.37770
.298
.19634
.345
.24022
.392
.28554
.439
.33185
.486
.37870
.299
.19725
.346
.24117
.393
.28652
.44
.33284
.487
.37970
.3
.19817
.347
.24212
.394
.28750
.441
.33384
.488
.38070
.301
.19908
.348
.24307
.395
.28848
.442
.33483
.489
.38170
.302
.20000
.349
.24403
.396
.28945
.443
.33582
.49
.38270
.303
.20092
.35
.24498
.397
.29043
.444
.33682
.491
.38370
,304
.20184
.351
.24593
.398
.29141
.445
.33781
.492
.38470
.305
.20276
.352
.24689
.399
.29239
.446
.33880
.493
.38570
.306
.20368
.353
.24784
.4
.29337
.447
.33980
.494
.38670
.307
.20460
.354
.24880
".401
.29435
.448
.34079
.495
.38770
.308
.20553
.355
.24976
.402
.29533
.449
.34179
.496
.38870
.309
.20645
.356
.25071
.403
.29631
.45
.34278
.497
.38970
.31
.20738
.357
.25167
.404
.29729
.451
.34378
.498
.39070
.311
.20830
.358
.25263
.405
.29827
.452
.34477
.499
.39170
.312
.20923
.359
.25359
.406
.29926
.453
.34577
.5
.39270
For rules for finding the area of a segment see Mensuration, page 60.
LENGTHS OF CIRCULAR ARCS.
(Degrees being given. Radius of Circle = 1.)
FORMULA. — Length of arc = g X radius X number of degrees.
RULE. — Multiply the factor in the table (see next page) for any given
number of degrees by the radius.
EXAMPLE. — Given a curve of a radius of 55 feet and an angle of 7 8° 20'.
r Factor from table for 78° 1 .3613568
Factor from table for 20' .0058178
Factor. 1.3671740
1.3671746X55 =
LENGTHS OP CIRCULAR ARCS.
FACTORS FOR LENGTHS OF CIRCULAR ARCS.
123
Degrees.
Minutes.
1
.0174533
.0349066
61
62
1 .0646508
1.0821041
121
122
2.1118484
2.1293017
1
2
.0002909
.0005818
3
.0523599
63
1.0995574
123
2.1467550
3
.0008727
A
.0698132
64
1.1170107
124
2.1642083
4
.0011636
5
.0872665
65
1.1344640
125
2.1816616
5
.0014544
6
.1047198
66
1.1519173
126
2.1991149
6
.0017453
7
.1221730
67
1.1693706
127
2.2165682
7
.0020362
8
.1396263
68
1.1868239
128
2.2340214
8
.0023271
9
.1570796
69
1.2042772
129
2.2514747
9
.0026 1 80
10
.1745329
70
1.2217305
130
2.2689280
10
.0029089
11
.1919862
71
1.2391838
131
2.2863813
11
.0031998
12
.2094395
72
1.2566371
132
2.3038346
12
.0034907
13
.2268928
73
1 .2740904
133
2.3212879
13
.0037815
14
.2443461
74
1.2915436
134
2.3387412
14
.0040724
15
.2617994
75
1.3089969
135
2.3561945
15
.0043633
16
.2792527
' 76
1.3264502
136
2.3736478
16
.0046542
17
.2967060
77
1.3439035
137
2.3911011
17
.0049451
18
.3141593
78
1.3613568
138
2.4085544
18
.0052360
19
.3316126
79
1.3788101
139
2.4260077
19
.0055269
20
.3490659
80
1.3962634
140
2.4434610
20
.0058178
21
.3665191
81
1.4137167
141
2.4609142
21
.0061087
22
.3839724
82
1 .43 1 1 700
142
2.4783675
22
.0063995
23
.4014257
83
1 .4486233
143
2.4958208
23
.0066904
24
.4188790
84
1 .4660766
144
2.5132741
24
.0069813
25
.4363323
85
1.4835299
145
2.5307274
25
.0072722
26
.4537856
86
1.5009832
146
2.5481807
26
.0075631
27
.4712389
87
1.5184364
147
2.5656340
27
.007854(1
28
.4886922
88
1.5358897
148
2.5830873
28
.0081449
29
.5061455
89
1.5533430
149
2.6005406
29
.0084358
30
.5235988
90
1.5707963
150
2.6179939
30
.008726(1
31
.5410521
91
1 .5882496
151
2.6354472
31
.0090175
32
.5585054
92
1.6057029
152
2.6529005
32
.0093084
33
.5759587
93
1.6231562
153
2.6703538
33
.0095993
34
.5934119
94
1 .6406095
154
2.6878070
34
.0098902
35
.6108652
95
1.6580628
155
2.7052603
35
.0101811
36
.6283185
96
1.6755161
156
2.7227136
36
.0104720
37
.6457718
97
1 .6929694
157
2.7401669
37
.0107629
38
.6632251
98
1.7104227
158
2.7576202
38
.0110538
39
.6806784
99
1.7278760
159
2.7750735
39
.0113446
40
.6981317
100
1.7453293
160
2.7925268
40
.0116355
41
.7155850
101
1.7627825
161
2.8099801
41
.0119264
42
.7330383
102
1.7802358
162
2.8274334
42
.0122173
43
.7504916
103
1.7976891
163
2.8448867
43
.0125082
44
.7679449
104
1.8151424
164
2.8623400
44
.0127991
45
.7853982
105
1.8325957
165
2.8797933
45
.0130900
46
.8028515
106
1 .8500490
166
"2.8972466
46
.0133809
47
.8203047
107
1.8675023
167
2.9146999
47
.0136717
48
.8377580
108
1.8849556
168
2.9321531
48
.0139626
49
.8552113
109
1 .9024089
169
2.9496064
49
.0142535
50
.8726646
110
1.9198622
170
2.9670597
50
.0145444
51
.8901179
111
1.9373155
171
2.9845130
51
.0148353
52
.9075712
112
1.9547688
172
3.0019663
52
.0151262
53
.9250245
113
1 19722221
173
3.0194196
53
.0154171
54
.9424778
114
1 .9896753
174
3.0368729
54
.0157080
55
.9599311
115
2.0071286
175
3.0543262
55
.0159989
56
.9773844
116
2.0245819
176
3.0717795
56
.0162897
57
.9948377
117
2.0420352
177
3.0892328
57
.0165806
58
1.0122910
118
2.0594885
178
3.1066861
58
.0168715
59
1.0297443
119
2.0769418
179
3.1241394
59
.0171624
60
1.0471976
120
2.0943951
180
3.1415927
60
.0174533
124
MATHEMATICAL
LENGTHS Off CtHCtJLAll ARCS.
(Diameter =- 1. Given the Chord and Height of the Arc.)
RULE FOR USE OF THE TABLE. — Divide the height by the chord. Find
In the column of heights the number equal to this quotient. Take out the
corresponding number from the column of lengths. Multiply this last
number by the length of the given chord; the product will be length of the
If the arc is greater than a semicircle, first find the diameter from the
formula, Diam. = (square of half chord -f- rise) + rise; the formula is true
whether the arc exceeds a semicircle or not. Then find the circumference.
From the diameter subtract the given height of arc, the remainder will be
height of the smaller arc of the circle; find its length according to the rule,
and subtract it from the circumference.
Hgts.
Lgths.
Hgts.
Lgths.
Hgts.
Lgths.
Hgts.
Lgths.
Hgts.
Lgths.
0.001
.00002
0.15
.05896
0.238
.14480
0.326
.26288
0.414
.40788
.005
.00007
.152
.06051
.24
.14714
.328
.26588
.416
.41145
.01
.00027
.154
.06209
.242
.14951
.33
.26892
.418
.41503
.015
.00061
.156
.06368
.244
.15189
.332
.27196
.42
.41861
.02
.00107
.158
.06530
.246
.15428
.334
.27502
.422
.42221
.025
.00167
.16
.06693
.248
.15670
.336
.27810
.424
.42583
.03
.00240
.162
.06858
.25
.15912
.338
.28118
.426
.42945
.035
.00327
.164
.07025
.252
.16156
.34
.28428
.428
.43309
.04
.00426
.166
.07194
.254
.16402
:342
.28739
.43
.43673
.045
.00539
.168
.07365
.256
.16650
.344
.29052
.432
.44039
.05
.00665
.17
.07537
.258
.16899
.346
.29366
.434
.44405
.055
.00805
.172
.07711
.26
.17150
.348
.29681
.436
.44773
.06
.00957
.174
.07888
.262
.17403
.35
.29997
.438
.45142
.065
.01123
.176
.08066
.264
.17657
.352
.30315
.44
.45512
.07
.01302
.178
.08246
.266
.17912
.354
.30634
.442
.45883
.075
.01493
.18
.08428
.268
.18169
.356
.30954
.444
.46255
.08
.01698
.182
.08611
.27
.18429
.358
.31276
.446
.46628
.085
.01916
.184
.08797
.272
.18689
.36
.31599
.448
.47002
.09
.02146
.186
.08984
.274
.18951
.362
.31923
.45
.47377
.095
.02389
.188
.09174
.276
.19214
.364
.32249
.452
.47753
.10
.02646
.19
.09365
.278
.19479
.366
.32577
.454
.48131
.102
.02752
.192
.09557
.28
.19746
.368
.32905
.456
.48509
.104
.02860
.194
.09752
.282
.20014
.37
.33234
.458
.48889
.106
.02970
.196
.09949
.284
.20284
.372
.33564
.46
.49269
.108
.03082
.198
.10147
.286
.20555
.374
.33896
.462
.49651
.11
.03196
.20
.10347
.288
.20827
.376
.34229
.464
.50033
.112
.03312
.202
.10548
.29
.21102
.378
.34563
.466
.50416
.114
.03430
.204
.10752
.292
.21377
.38
.34899
.468
.50800
.116
.03551
.206
.10958
.294
.21654
.382
.35237
.47
.51185
.118
.03672
.208
.11165
.296
.21933
.384
.35575
.472
.51571
.12
.03797
.21
.11374
.298
.22213
.386
.35914
.474
.51958
.122
.03923
.212
.11584
.30
.22495
.388
.36254
.476
.52346
.124
.04051
.214
.11796
.302
.22778
.39
.36596
.478
.52736
.126
.04181
.216
.12011
.304
.23063
.392
.36939
.48
.53126
.128
.04313
.218
.12225
.306
.23349
.394
.37283
.482
.53518
.13
.04447
.22
.12444
.308
.23636
.396
.37628
.484
.53910
.132
.04584
.222
.12664
.31
.23926
.398
.37974
.486
.54302
.134
.04722
.224
.12885
.312
.24216
> .40
.38322
.488
.54696
.136
.04862
.226
.13108
.314
.24507
.402
.38671
.49
.55091
.138
.05003
.228
.13331
.316
.24801
.404
.39021
.492
.55487
.14
.05147
.23
.13557
.318
.25095
.406
.39372
.494
.55854
.142
.05293
.232
.13785
.32
.25391
.408
.39724
.496
.56282
.144
.05441
.234
.14015
.322
.25689
.41
.40077
.498
.56681
.146
.05591
.236
.14247
.324
.25988
.412
.40432
.50
.57080
.148
.05743
CIRCLES AND SQUARES OF EQUAL AREA. 125
Diameters of Circles and Sides of Squares of Same Area.
Diameter of circle * 1.128379 X side of square of same area.
Side of square « 0.886227 X diameter of circle of same area.
Diam. of Cir-
cle or Side
of Square.
Side of
Square
Equiva-
lent to
Circle.
Diam. of
Circle
Equiva-
lent to
Square.
Diam. of Cir-
cle or Side
of Square.
Side of
Square
Equiva-
lent to
Circle.
Diam. of
Circle
Equiva-
lent to
Square.
Diam. of Cir-
cle or Side
of Square.
Side of
Square
Equiva-
lent to
Circle.
Diam. of
Circle
Equiva-
lent to
Square.
1
0.886
1 .128
34
30.132
38.365
67
59.377
75.601
2
1.772
2.257
35
31.018
39.493
68
60.263
76.730
3
2.659
3.385
36
31.904
40.622
69
61 .150
77.858
4
3.545
4.514
37
32.790
41.750
70
62 . 036
78.987
5
4.431
5.642
38
33.677
42.878
71
62.922
80.115
6
5.317
6.770
39
34.563
44.007
72
63.808
81.243
7
6.204
7.899
40
35.449
45.135
73
64.695
82.372
8
7.090
9.027
41
36.335
46 . 264
74
65.581
83.500
9
7.976
10.155
42
37.222
47.392
75
66.467
84.628
10
8.862
11.284
43
38.108
48.520
76
67.353
85.757
11
9.748
12.412
44
38.994
49.649
77
68.239
86.885
12
10.635
13.541
45
39.880
50.777
78
69.126
tttt.014
13
11.521
14.669
46
40.766
51 .905
79
70.012
89.142
14
12.407
15.797
47
41 .653
53.034
80
70.898
90.270
15
13.293
16.926
48
42.539
54.162
81
71 .784
91 .399
16
14.180
18.054
49
43.425
55.291
82
72.671
92.527
17
15.066
19.182
50
44.311
56.419
83
73.557
93.655
18
15.952
20.311
51
45.198
57.547
84
74.443
94.784
19
16.838
21.439
52
46.084
58.676
85
75.330
95.912
20
17.725
22.568
53
46.970
59.804
86
76.216
97.041
21
18.611
23.696
54
47.856
60.932
87
77.102
98.169
22
19.497
24.824
55
48.742
62.061
88
77.988
99.297
23
20.383
25.953
56
49.629
63.189
89
>8.874
100.426
24
21.269
27.081
57
50.515
64.318
90
79.760
101 .554
25
22.156
28.209
58
51.401
65.446
91
80.647
102.682
26
23.042
29.338
59
52.287
66.574
92
81.533
103.811
27
23.928
30.466
60
53.174
67.703
93
82.419
104.939
28
24.814
31.595
61
54.060
68.831
94
83.305
106.068
29
25.701
32.723
62
54.946
69.959
95
84 192
107.196
30
26.587
33.851
63
55.832
71 .088
96
85.078
108.324
31
27.473
34.980
64
56 719
72.216
97
85.964
109.453
32
28.359
36.108
65
57.605
73.345
98
86.850
110.581
33
29.245
37.237
66
58.491
74.473
99
87.736
111.710
Number of Circles that can be Inscribed within a Larger Circle. •
N = Number of circles; D = diam. of enclosing circle; d = diam. of
inscribed circles.
Obtain the ratio of D -5- d and find the value nearest to it in the
table. Opposite this value under Ar, find the number of circles of
diameter d that can be inscribed in a circle of diameter D.
N
D/d
N
D/d
N
D/d
N
D/d
N
D/d
N
D/d
N
D/d
2
2.00
13
4.23
24
5.72
35
6.86
46
7.81
85
10.46
140
13.26
3
2.15
14
4.41
25
5.81
36
7.00
47
7.92
90
10.73
145
13.49
4
2.41
15
4.55
26
5.92
37
7.00
48
8.00
95
11.15
150
13.72
- 5
2.70
16
4.70
27
6.00
38
7.08
49
8.03
100
11.34
155
13.95
6
3.00
17
4.86
28
6.13
39
7.18
50
8.13
105
11.60
160
14.17
7
3.00
18
5.00
29
6.23
40
7.31
55
8.21
110
11.85
165
14.39
8
3.31
19
5.00
30
6.40
41
7.39
60
8.94
115
12.10
170
14.60
9
3.61
20
5.18
31
6.44
42
7.43
65
9.25
120
12.34
175
14.81
10
3.80
21
5.31
32
6.55
43
7.61
70
9.61
125
12.57
180
15.01
11
3.92
22
5.49
33
6.70
44
7.70
75
9.93
130
12.80
185
15.20
12
4.05
23
5.61
34
6.76
45
7.72
80
10.20
135
13.06
190
15.39
126
MATHEMATICAL TABLES.
SPHERES.
(Some errors of 1 in the last figure only. From TRAUTWINE.)
Diam
Sur-
face.
Vol-
ume.
Diam
Sur-
face.
Vol-
ume.
Diam.
Sur-
face.
Vol-
ume.
V32
.0030
.0000
31/4
33.18
17.97
97/8
306.36
504.21
Vie
.0122
.0001
5/16
34.47
19.03
10.
314.16
523.60
3/32
.0276
.0004
3/8
35.78
20.129
1/8
322.06
543.48
1/8
.0490
.0010
7/16
37.122
21.268
1/4
330.06
563.86
5/32
.0767
.0020
1/2
38.484
22.449
3/8
338.16
584.74
3/16
.1104
.0034
9/16
39.872
23.674
1/2
346.36
606.13
7/32
.1503
.0054
5/8
41.283
24.942
5/3
354.66
628.04
1/4
.1963
.0081
H/16
42.719
26.254
3/4
363.05
650.46
9/32
.2485
.0116
3/4
44.179
27.61
7/8
371.54
673.42
5/16
.3068
.0159
13/16
45.664
29.016
11.
380.13
696.91
U/32
.3712
.0212
7/8
47.173
30.466
1/8
388.83
720.95
3/8
.44179
.0276
15/16
48.708
31.965
1/4
397.61
745.51
13/32
.51848
.0351
4.
50.265
33.510
3/8
406.49
770.64
7/16
.60132
.0438
1/8
53.456
36.751
V2
415.48
796.33
15/32
.69028
.0539
V4
56.745
40.195
5/8
424.50
822.58
1/2
.78540
.0654
3/8
60.133
43.847
3/4
433.73
849.40
9/16
.99403
.0931
1/2
63.617
47.713
7/8
443.01
876.79
5/8
1.2272
.12783
5/8
67.201
51.801
12.
452.39
904.78
H/16
1.4849
.17014
3/4
70.883
56.116
1/4
471.44
962.52
3/4
1.7671
.22089
7/8
74.663
60.663
V2
490.87
1 022.7
13/16
2.0739
.28084
5.
78.540
65.450
3/4
510.71
1085.3
7/8
2.4053
.35077
1/8
82.516
70.482
13.
530.93
1150.3
15/16
2.7611
.43 143
V4
86.591
75.767
V4
551.55
1218.0
1
3.1416
.52360
3/8
90.763
81 .308
1/2
572.55
1288.3
Vl6
3.5466
.62804
1/2
95.033
87.113
3/4
593.95
1361.2
1/8
3.9761
.7455
5/8
99.401
93.189
14.
615.75
1436.8
3/16
4.4301
.8768
3/4
103.87
99.541
1/4
637.95
1515.1
1/4
4.9088
.0227
7/8
108.44
106.18
1/2
660.52
1596.3
5/16
5.4119
.1839
6.
113.10
113.10
3/4
683.49
1680.3
3/8
5.9396
.3611
1/8
117.87
120.31
15.
706.85
1767.2
7/16
6.4919
.5553
1/4
122.72
127.83
1/4
730.63
1857.0
1/2
7.0686
.7671
3/8
127.68
135.66
1/2
754.77
1949.8
9/16
7.6699
.9974
1/2
132.73
143.79
3/4
779.32
2045.7
5/8
8.2957
2.2468
5/8
137.89
152.25
16.
804.25
2144.7
, U/16
8.9461
2.5161
3/4
143.14
161.03
1/4
829.57
2246.8
I Q/
3/4
9.6211
2.8062
7/8
148.49
170.14
1/2
855.29
2352.1
13/16
0.321
3.1177
7.
153.94
179.59
3/4
881.42
2460.6
'7/8
1.044
3.4514
1/8
159.49
189.39
17.
907.93
2572.4
15/16
1.793
3.8083
1/4
165.13
199.53
1/4
934.83
2687.6
2.
2.566
4.1888
3/8
1 70.87
210.03
1/2
962.12
2806.2
1/16
3.364
4.5939
1/2
176.71
220.89
3/4
989.80
2928.2
1/8
4.186
5.0243
5/8
182.66
232.13
18.
1017.9
3053.6
3/16
5.033
5.4809
3/4
188.69
243.73
1/4
1046.4
3182.6
1/4
5.904
5.9641
7/8
194.83
255.72
1/2
1075.2
3315.3
5/16
6.800
6.4751
8.
201.06
268.08
3/4
1 104.5
3451.5
3/8
7.721
7.0144
V8
207.39
280.85
19.
1 134.1
3591.4
Vl6
8.666
7.5829
1/4
213.82
294.01
1/4
1164.2
3735.0
1/2
9.635
8.1813
3/8
220.36
307.58
1/2
1 194.6
3882.5
9/16
0.629
8.8103
1/2
226.98
321.56
3/4
1225.4
4033.7
5/8
1.648
9.4708
5/8
233.71
335.95
20.
1256.7
4188.8
U/16
2.691
0.154
3/4
240.53
350.77
V4
1288.3
4347.8
3/4
3.758
0.889
7/8
247.45
366.02
1/2
1320.3
4510.9
13/16
4.850
1.649
9.
254.47
381.70
3/4
352.7
4677.9
7/8
5.967
2.443
1/8
261.59
397.83
21.
385.5
4849.1
15/16
7.109
3.272
1/4
268.81
414.41
1/4
418.6
5024.3
3.
8.274
4.137
3/8
270.12
431.44
1/2
452.2
5203.7
1/16
9.465
5.039
1/2
283.53
448.92
3/4
486.2
5387.4
1/8
0.680
5.979
5/8
291.04
466.87
23.
520.5
5575.3
3/16
1.919
6.957
3/4
289.65
485.31
1/4
555.3
5767.6
SPHERES.
SPHERES — Continued.
127
Diam
Sur-
face.
Vol-
urne
Diam
Sur-
face
Vol-
ume
Diam
Sur-
face.
Vol.
ume.
22 1/2
1590.4
5964.
40 1/2
5153.1
34783
70 1/2
15615
183471
3/4
1626.0
6165.2
41.
5281.1
36087
71.
15837
187402
23.
1661.9
6370.6
V2
5410.7
37423
1/2
16061
191389
1/4
1698.2
6580.6
43.
5541.9
38792
73.
16286
195433
1/2
1735.0
6795.2
1/2
5674.5
40194
V2
16513
199532
3/4
1772.
7014.3
43.
5808.8
41630
73.
16742
203689
24.
1809.6
7238.2
1/2
5944.7
43099
1/2
16972
207903
V4
1847.5
7466.7
44.
6082.1
44602
74.
17204
212175
1/2
1885.8
7700.
1/2
6221.2
46141
1/2
17437
216505
3/4
1924.4
7938.3
45.
6361.7
47713
75.
17672
220894
25.
1963.5
8181.3
V2
6503.9
49321
1/2
17908
225341
V4
2002.9
8429.2
46.
6647.6
50965
76.
18146
229848
!/2
2042.6
8682.0
1/2
6792.9
52645
V2
18386
234414
3/4
2083.0
8939.9
47.
6939.9
54362
77.
18626
239041
26.
2123.7
9202.8
1/2
7088.3
56115
V2
18869
243728
1/4
2164.7
9470.8
48.
7238.3
57906
78.
19114
248475
1/2
2206.2
9744.0
1/2
7389.9
59734
1/2
19360
253284
3/4
2248.0
10022
49.
7543.1
61601
79.
19607
258155
27.
2290.2
10306
1/2
7697.7
63506
1/2
19856
263088
1/4
2332.8
10595
50.
7854.0
65450
80.
20106
268083
1/2
2375.8
10889
1/2
8011.8
67433
1/2
20358
273147
3/4
2419.2
11189
51.
8171.2
69456
81.
20612
278263
28.
2463.0
11494
1/2
8332.3
71519
V2
20867
283447
1/4
2507.2
11805
52.
8494.8
73622
83.
2i<24
288696
1/2
2551.8
12121
1/2
8658.9
75767
1/2
21382
294010
3/4
2596.7
12443
53.
8824.8
77952
83.
21642
299388
29.
2642.1
12770
1/2
8992.0
80178
1/2
21904
304831
1/4
2687.8
13103
54.
9160.8
82448
84.
22167
310340
1/2
2734.0
13442
V2
9331.2
84760
1/2
22432
315915
3/4
2780.5
13787
55.
9503.2
87114
85.
22698
321556
30.
2827.4
14137
V2
9676.8
89511
1/2
22966
327264
1/4
2874.8
14494
56.
9852.0 '
91953
86.
23235
333039
1/2
2922.5
14856
V2
10029
94438
1/2
23506
338882
3/4
2970.6
15224
57.
10207
96967
87.
23779
344792
31.
3019.1
15599
1/2
10387
99541
1/2
24053
350771
1/4
3068.0
15979
58.
10568
102161
88.
24328
356819
1/2
3117.3
16366
1/2
10751
104826
1/2
24606
362935
3/4
3166.9
16758
59.
10936
107536
89.
24885
369122
33.
3217.0
17157
1/2
11122
110294
1/2
25165
375378
V4
3267.4
17563
60.
11310
113098
90.
25447
381704
1/2
3318.3
17974
V2
11499
115949
1/2
25730
388102
3/4
3369.6
18392
61.
11690
118847
91.
26016
394570
33.
3421.2
18817
1/2
11882
121794
V2
26302
401109
V4
3473.3
19248
63.
12076
124789
93.
26590
407721
V2
3525.7
19685
1/2
12272
127832
1/2
26880
4 1 4405
8/4
3578.5
20129
63.
12469
130925
93.
27172
421161
34.
3631.7
20580
1/2
12668
134067
1/2
27464
427991
1/4
3685.3
21037
64.
12868
137259
94.
27759
434894
1/2
3730.3
21501
1/2
13070
140501
1/2
28055
441871
35.
3848.5
22449
65.
13273
143794
95.
28353
448920
V2
3959.2
23425
1/2
13478
147138
V2
28652
456047
36.
4071.5
24429
66.
13685
1 50533
96.
28953
463248
*/2
4185.5
25461
1/2
13893
153980
1/2
29255
470524
37.
4300.9
26522
67.
14103
157480
97.
29559
477874
V2
4417.9
27612
V2
14314
161032
1/2
29865
485302
38.
4536.5
28731
68.
14527
164637
98.
30172
492808
V2
4656.7
29880
1/2
14741
168295
1/2
30481
500388
39.
4778.4
31059
69.
14957
1 72007
99.
30791
508047
V2
4901.7
32270
1/2
15175
175774
V2
31103
515785
40.
5026.5
33510
70.
15394
1 79595
00.
31416
523598
128
MATHEMATICAL TABLES.
NUMBER OF SQUARE FEET IN PLATES 3 TO 32 FEET
LONG, AND 1 INCH WIDE.
For other widths, multiply by the width in inches. 1 sq . in. = 0.00694/9 sq. ft,
Ft. and
Ins.
Long.
Ins.
Long.
Square
Feet.
Ft. and
Ins.
Long;
Ins.
Long.
Square
Feet.
Ft. and
Ins.
Long.
Ins.
Long.
Square
Feet.
3. 0
36
.25
7. 10
94
.6528
12. 8
152
.056
37
.2569
11
95
.6597
9
153
.063
2
38
.2639
8. 0
96
.6667
10
154
.069
3
39
.2708
1
97
.6736
11
155
,076
4
40
.2778
2
98
.6806
13. 0
156
,083
5
41
.2847
3
99
.6875
1
157
09
6
42
.2917
4
100
.6944
2
158
.097
7
43
.2986
5
101
.7014
3
159
.104
8
44
.3056
6
102
.7083
4
160
.1 14
9
45
.3125
7
103
.7153
5
161
.ua
10
46
.3194
8
104
.7222
6
162
.125
11
4. 0
47
48
.3264
.3333
9
10
105
106
.7292
.7361
7
8
163
•164
.13.?
. 1 3V
49
.3403
11
107
.7431
9
165
.146
2
50
.3472
9. 0
108
.75
10
166
.153
3
51
.3542
1
109
.7569
11
167
.159
4
52
.3611
2
110
.7639
14. 0
168
.167
5
53
.3681
3
111
.7708
1
169
.174
6
54
.375
4
112
.7778
2
170
.181
7
55
.3819
5
113
.7847
3
171
.188
8
56
.3889
6
114
.7917
4
172
.194
9
57
.3958
7
115
.7986
5
173
.201
10
58
.4028
8
116
.8056
6
174
.208
It
59
.4097
9
117
.8125
7
175
.215
5. 0
60
.4167
10
• 118
.8194
8
176
.222
61
.4236
11
119
.8264
9
177
.229
2
62
.4306
10. 0
120
.8333
10
178
.236
3
63
.4375
121
.8403
11
179
.243
4
64
.4444
2
122
.8472
15. 0
180
.25
5
65
.4514
3
123
.8542
181
.257
6
66
.4583
4
124
.8611
2
182
.264
7
67
.4653
5
125
.8681
3
183
.271
8
68
.4722
6
126
.875
4
184
.278
9
69
.4792
7
127
.8819
5
185
.285
10
70
.4861
8
128
.8889
6
186
.292
11
71
.4931
9
129
.8958
7
187
.299
8. 0
72
.5
10
130
.9028
8
188
.306
1
73
.5069
11
131
.9097
9
189
.313
2
74
.5139
11. 0
132
.9167
10
190
.319
3
75
.5208
133
.9236
11
191
.326
4
76
.5278
2
134
.9306
16. 0
192
.333
5
77
.5347
3
135
.9375
1
193
.34
6
78
.5417
4
136
.9444
2
194
.347
7
79
.5486
5
137
.9514
3
195
.354
8
80
.5556
6
138
.9583
4
196
.361
9
81
.5625
7
139
.9653
5
197
.368
10
82
.5694
8
140
.9722
6
198
.375
11
83
.5764
9
141
.9792
7
199
.382
7. 0
84
.5834
10
142
.9861
8
200
.389
85
.5903
11
143
.9931
9
201
.396
2
86
.5972
12. 0
144
.000
10
202
.403
3
87
.6042
145
.007
11
203
.41
4
88
.6111
2
146
.014
17. 0
204
.417
5
89
.6181
3
147
.021
1
205
.424
6
90
.625
4
148
.028
2
206
.431
7
91
.6319
5
149
.035
3
207
.438
8
92
.6389
6
150
1.042
4
208
.444
9
93
.6458
7
151
1.049
5
209
K451
NUMBER OF SQUARE FEET IN PLATES.
120
SQUARE FEET IN PLATES. — Continued.
Ft. and
Ins.
Long.
Ins.
Long.
Square
Feet.
Ft. and
Ins.
Long.
Ins.
Long.
Square
Feet.
Ft. and
Ins..
Long.
Ins.
Long
Square
Feet.
17. 6
210
1.458
22. 5
269
1.868
27. 4
328
2.278
7
211
1.465
6
270
1.875
5
329
2.285
8
212
1.472
7
271
1.882
6
330
2.292
9
213
1.479
8
272
1.889
7
331
2.299
10
214
1.486
9
273
1.896
8
332
2.306
11
215
1.493
10
274
1.903
9
333
2.313
18. 0
216.
1.5
11
275
1.91
10
334
2.319
217
1.507
23. 0
276
1.917
11
335
2.326
2
218
1.514
277
1.924
28. 0
336
2.333
3
219
1.521
2
278.
1.931
1
337
2.34
4
220
1.528
3
279
1.938
2
338
2.347
5
221
1.535
4
280
1.944
3
339
2.354
6
222
1.542
5
281
1.951
4
340
2.361
7
223
1.549
6
282
1.958
5
341
2.368
8
224
1.556
7
283
1.965
6
342
2.375
9
225
1.563
8
284
1.972
7
343
2.382
10
226
1.569
9
285
1.979
8
344
2.389
11
227
1.576
10
286
1.986
9
345
2.396
19. 0
228
1.583
11
287
1.993
10
346
2.403
229
1.59
24. 0
288
2.
11
347
2.41
2
230
1.597
1
289
2.007
29. 0
348
2.417
3
231
1.604
2
290
2.014
349
2.424
4
232
1.611
3
291"
2.021
2
350
2.431
5
233
1.618
4
292
2.028
3
351
2.438
6
234
1.625
5
293
2.035
4
352
2.444
7
235
1.632
6
294
2'.042
5
353
2.451
8
236
1.639
7
295
2.049
6
354
2.458
9
237
1.645
8
296
2.056
7
355
2.465
10
238
1.653
9
297
2.063
8
356
2.472
11
239
1 .659
10
298
2.069
9
357
2.479
20. 0
240
1.667
11
299
2.076
10
358
2.486
241
1.674
25. 0
300
*2.083
11
359
2.493
2
242
1.681
1
301
2.09
30. 0
360
2.5
3
243
1.688
2
302
2.097
1
361
2.507
4
244
1.694
3
303
2.104
2
362
2.514
5
245
1.701
4
304
2.111
3
363
2.521
6
246
1.708
5
305
2.118
4
364
2.528
7
247
1.715
6
306
2.125
5
365
2.535
8
248
1.722
7
307
2.132
6
366
2.542
9
249
1.729
8
308
2.139
7
367
2.549
10
250
1.736
9
309
2.146
8
368
2.556
II
251
1.743
10
310
2.153
9
369
2.563
21. 0
252
1.75
11
311
2.16
10
370
2.569
253
1.757
26. 0
312
2.167
11
371
2.576
2
254
1.764
313
2.174
31. 0
372
2.583
3
255
1.771
2
314
2.18V
373
2.59
4
256
1.778
3
315
2.188
2
374
2.597
5
257
1.785
4
316
2.194
3
375
2.604
6
258
1.792
5
317
2.201
4
376
2.611
7
259
1.799
6
318
2.208
5
377
2.618
8
260
1.806
7
319
2.215
6
378
2.625
9
261
1.813
8
320
2.222
7
379
2.632
10
262
1.819
9
321
2.229
8
380
2.639
11
263
1.826
10
322
2.236
9
381
2.646
23.0
264
1.833
11
323
2.243
10
382
2.653
1
265
1.84
27. 0
324
2.25
11
383
2.66
2
266
1.847
325
2.257
32. 0
384
2.667
3
267
1.854
2
326
2.264
1
385
2.674
4
268
1.861
3
327
2.271
2
386
2.681
130
MATHEMATICAL TABLES.
GALLONS AND CUBIC FEET,
United States Gallons in a given Number of Cubic Feet.
1 cubic foot = 7. 4805 19 U.S. gallons; 1 gallon = 231 cu.ir . = 0.13368056cu. ft.
Cubic Ft.
Gallons.
Cubic Ft.
Gallons.
Cubic Ft.
Gallons.
0.1
0.75
50
374.0
8,000
59,844.2
0.2
1.50
60
448.8
9,000
67,324.7
0.3
2.24
70
523.6
10,000
74,805.2
0.4
2.99
80
598.4
20,000
.•• 149,610.4
0.5
3.74
90
673.2
30,000
224,415.6
0.6
4.49
100
748.0
40,000
299,220.8
0.7
5.24
200
1,496.1
50,000
374,025.9
0.8
5.98
300
2,244.2
60,000
448,831.1
0.9
6.73
400
2,992.2
70,000
523,636.3
1
7.48
500
3,740.3
80,000
598,441.5
2
14.96
600
4,488.3
90,000
673,246.
3
22.44
700
5,236.4
100,000
748,051.9
4
29.92
800
5,984.4
200,000
1,496,103.8
5
37.40
900
6,732.5
300,000
2,244,155.7
6
44.88
1,000
7,480.5
400,000
2,992,207.6
7
52.36
2,000
14,961.0
500,000
3,740,259.5
8
59.84
3,000
22,441.6
600,000
4,488,311.4
9
67.32
4,000
29,922.1
700,000
5,236,363.3
10
74.80
5,000
37,402.6
800 000
5,984,415.2
20
149.6
6,000
44,883.1
900,000
6,732,467.1
30
224.4
7,000
52,363.6
1,000,000
7,480,519.0
40
299.2
Cubic Feet in a given Number of Gallons.
Gallons.
Cubic Ft.
Gallons.
Cubic Ft.
Gallons.
Cubic Ft.
1
2
.134
.267
1,000
2,000
133.681
267.361
1,000,000
2,000,000
133,680.6
267,361.1
3
.401
3,000
401.042
3,000,000
401,041.7
4
.535
4,000
534.722
4,000,000
534,722.2
5
.668
5,000
668.403
5,000,000
668,402.8
6
.802
6,000
802.083
6,000,000
802,083.3
7
.936
7,000
935.764
7,000,000
935,763.9
8
1.069
' 8,000
1,069.444
8,000,000
1,069,444.4
9
1.203
9,000
1,203.125
9,000,000
1,203,125.0
10
1.337
10,000
1,336.806
10,000,000
1,336,805.6
Cubic Feet per Second, Gallons in 24 hours, etc.
1/60 I 1.5472 2.2800
1 60 92.834 133.681
7.480519 448.83 694.444 1,000.
10,771.95 646,317 1,000,000 1,440,000
62.355 3741.3 5788.66 8335.65
Cu. ft. per sec.
Cu. ft. per min.
U. S* Gals, per min.
" " " 24 hrs.
Pounds of water )
(at 62° F.) per min. J
The gallon 'is a troublesome and unnecessary measure. If hydraulic
engineers and pump manufacturers would stop using it, and use cubig
Jeet instead, many tedious calculations would be saved.
CAPACITY OF CYLINDKICAL VESSELS.
131
CONTENTS IN CUBIC FEET AND U. S. GALLONS OF PIPES
AND CYLINDERS OF VARIOUS DIAMETERS AND ONE
FOOT IN LENGTH.
1 gallon = 231 cubic inches. 1 cubic foot = 7.4805 gallons.
For 1 Foot in
For 1 Foot in
For 1 Foot in
d
Length.
.S
Length.
d
Length.
5 as
0> 3?
fc«
•»•» 2
§•§
Cu.Ft.
U.S.
-t~ O
oj^j
Jo
Cu.Ft.
U.S.
•S 2
d «
Cu.Ft.
U.S.
c c
also
Gals.,
d
also
Gals.,
d d
also
Gals..
Q
Area in
231
p
Area in
231
Area in
231
M
Sq.Ft.
Cu.In.
Sq.Ft.
Cu.In.
.
Sq.Ft.
Cu. In.
V4
.0003
.0025
63/4
.2485
1.859
19
1.969
14.73
5/16
.0005
.004
7
.2673
1.999
191/2
2074
15.51
3/8
.0008
.0057
7V4
.2867
2.145
20
2.182
16.32
7/16
.001
.0078
71/2
.3068
2.295
201/2
2.292
17.15
1/2
.0014
.0102
73/4
.3276
2.45
21
2.405
17.99
9/16
.0017
.0129
8
.3491
2.611
2U/2
2.521
18.86
5/8
.0021
.0159
8l/4
.3712
2.777
22
2.640
19.75
11/16
.0026
;0193
81/2
.3941
2.948
221/2
2.761
20.66
3/4
.0031
.0230
83/4
.4176
3.125
23
2.885
21.58
«/16
.0036
.0269
9
.4418
3.305
231/2
3.012
22.53
7/8
.0042
.0312
91/4
.4667
3.491
24
3.142
23.50
15/16
.0048
.0359
91/2
.4922
3.682
25
3.409
25.50
1
.0055
.0408
93/4
.5185
3.879
26
3.687
27.58
U/4
.0085
.0638
10
.5454
4.08
27
3.976
29.74
U/2
.0123
.0918
101/4
.5730
4.286
28
4.276
31.99
13/4
.0167
.1249
101/2
.6013
4.498
29
4.587
34.31
2
.0218
.1632
103/4
.6303
4.715
30
4.909
36.72
2V4 -
.0276
.2066
11
.66
4.937
31
5.241
39.21
21/2
.0341
.2550
111/4
.6903
5.164
32
5.585
41.78
23/4
.0412
.3085
111/2
.7213
5.396
33
5.940
44.43
3
.0491
.3672
113/4
.7530
5.633
34
6.305
47.16
31/4
.0576
.4309
12
.7854
5.875
35
6.681
49.98
31/2
.0668
.4998
121/2
.8522
6.375
36
7.069
52.88
33/4
.0767
.5738
13
.9218
6.895
37
7.467
55.86
4
.0873
.6528
13V2
.994
7.436
38
7.876
58.92
41/4
.0985
.7369
14
1.069
7.997
39
8.296
62.06
4V2
.1104
.8263
141/2
1.147
8.578
40
8.727
65.28
43/4
.1231
.9206
15
1.227
9.180
41
9.168
68.58
5
.1364
.020
15l/2
1.310
9.801
42
9.621
71.97
5V4
.1503
.125
16
1.396
10.44
43
10.085
75.44
5i/2
.1650
.234
161/2
.485
11.11
44
10.559
78.99
53/4
.1803
.349
17
.576
11.79
45
11.045
82.62
6
.1963
.469
171/2
.670
12.49
46
11.541
86.33
61/4
.2131
.594
18
.768
13.22
47
12.048
90.10
61/2
.2304
.724
18l/2
.867
13.96
48
12.566
94.00
To^find the capacity of pipes greater than the largest given in the table,
aer n any o z,
in cubic feet by 621/4 or the gallons by 8 1/3, or, if a closer approximation is
required, by the weight of a cubic foot of water at the actual temperature
in the pipe.
Given the dimensions of a cylinder in inches, to find its capacity in U. 8.
gallons: Square the diameter, multiply by the length and by 0.0034. If d=
diameter, I - length, gallons- d* X °^54 X * - 0.0034 & 1. If D and L are
in feet, gallons - 5.875 D*L.
.132
MATHEMATICAL TABLES.
CYLINDRICAL, VESSELS, TANKS, CISTERNS, ETC.
Diameter In Feet and Inches, Area in Square Feet, and U. S,
Gallons Capacity for One Foot in Depth.
1 gallon = 231 cubic inches =
1 cubic foot
7.4805
' 0.13368 cubic feet.
Diam.
Area.
Gals.
Diam.
Area.
Gals.
Diam.
Area.
Gals.
Ft. In.
Sq.ft.
1 foot
depth.
Ft. In.
Sq. ft.
1 foot
depth.
Ft. In.
Sq.ft.
1 foot
depth.
1
.785
5.87
5 8
25.22
188 .66
19
283 .53
2120.9
1
.922
6.89
5 9
25.97
194.25
19 3
291.04
2177.1
2
.069
8.00
510
26.73
199.92
19 6
298.65
2234.0
3
.227
9.18
5 11
27.49
205.67
19 9
306.35
2291.7
A
.396
10.44
6
28.27
211.51
20
314.16
2350.1
5
.576
11.79
6 3
30.68
229.50
20 3
322.06
2409.2
6
.767
13.22
6 6
33.18
248.23
20 6
330.C6
2469.1
7
.969
14.73
6 9
35.78
267.69
20 9
338.16
2529,6
8
2.182
16.32
7
38.48
287.88
21
346.36
2591.0
9
2.405
17.99
7 3
41.28
308.81
21 3
354.66
2653.0
10
2.640
19.75
7 6
44.18
330.48
21 6
363.05
2715.8
11
2.885
21.58
7 9
47.17
352.88
21 9
371.54
2779.3
3.142
23.50
8
50.27
376.01
22
380.13
2843.6
1
3.409
25.50
8 3
53.46
399.88
22 3
388.82
2908.6
2 2
3.687
27.58
8 6
56.75
424.48
22 6
397.61
2974.3
2 3
3.976
29.74
8 9
60.13
449.82
22 9
406.49
3040.8
2 4
4.276
31.99
9
63.62
475.89
23
415.48
3108.0
2 5
4.587
34.31
9 3
67.20
502.70
23 3
424.56
3175.9
2 6
4.909
36.72
9 6
70.88
530.24
23 6
433.74
3244.6
2 7
5.241
39.21
9 9
74.66
558.51
23 9
443.01
3314.0
2 8
5.585
41.78
10
78.54
587.52
24
452.39
3384.1
2 9
5.940
44.43
10 3
82.52
617.26
24 3
461.86
3455.0
2 10
6.305
47.16
10- 6
86.59
647.74
24 6
471.44
3526.6
2 11
6.681
49.98
10 9
90.76
678.95
24 9
481.11
3598.9
3
7.069
52.88
11
95.03
710.90
25
490.87
3672.0
1
7.467
55.86
11 3
99.40
743.58
25 3
500.74
3745.8
2
7.876
58.92
11 6
103.87
776.99
25 6
510.71
3820.3
3
8.296
62.06
11 9
108.43
811.14
25 9
520.77
3895.6
A
8.727
65.28
12
113.10
846.03
26
530.93
3971.6
5
9.168
68.58
12 3
117.86
881.65
26 3
541.19
4048.4
6
9.621
71.97
12 6
122.72
918.00
26 6
551.55
4125.9
7
10.085
75.44
12 9
127.68
955.09
26 9
562.00
4204. 1
8
10.559
78.99
13
132.73
992.91
27
572.56
4283.0
9
1 1 .045
82.62
13 3
137.89
1031.5
27 3
583.21
4362.7
10
11.541
86.33
13 6
143.14
1070.8
27 6
593.96
4443.1
11
12.048
90.13
13 9
1 48.49
1110.8
27 9
604.81
4524.3
12.566
94.00
14
153.94
1151.5
28
615.75
4606.2
1
13.095
97.96
14 3
159.48
1193.0
28 3
626.80
4688.8
2
13.635
102.00
14 6
165.13
1235.3
28 6
637.94
4772.1
3
14.186
106.12
14 9
170.87
1278.2
28 9
649.18
4856.2
4
14.748
110.32
15
176.71
1321.9
29
660.52
4941.0
5
15.321
114.61
15 3
182.65
1366.4
29 3
67 1 .96
5026.6
6
15.90
118.97
15 6
188.69
1411.5
29 6
683.49
5112.9
7
16.50
123.42
15 9
194.83
1457.4
29 9
695.13
5199.9
8
17.10
127.95
16
201.06
1504.1
30
706.86
5287.7
9
17.72
132.56
46 3
207.39
1551.4
30 3
718.69
5376.2
10
18.35
137.25
16 6
213.82
1 599.5
30 6
730.62
5465.4
11
18.99
142.02
16 9
220.35
1648.4
30 9
742.64
5555.4
19.63
146.88
17
226.98
1697.9
31
754.77
5646.1
1
20.29
151.82
17 3
233.71
1748.2
31 3
766.99
5737.5
2
20.97
156.83
17 6
240.53
1799.3
31 6
779.31
5829.7
3
21.65
161.93
17 9
247.45
1851.1
31 9
791.73
5922.6
4
22.34
167.12
18
254.47
1903.6
32
804.25
6016.2
5
23.04
172.38
18 3
261.59
1956.8
32 3
816.86
6110.6
6
23.76
177. ,72
18 6
268.80
2010.8
32 6
829.58
6205.7
7
24.48
183.15
18 9
276.12
2065.5
32 9
842.39
6301.5
CAPACITIES OF RECTANGULAR TANKS.
133
CAPACITIES OF RECTANGULAR TANKS IN U. S.
GALLONS, FOB EACH FOOT IN DEPTH.
1 cubic foot =- 7.4805 U. S. gallons
Vidth
of
Fank.
Length of Tank.
feet.
2
ft. in.
2 6
feet.
3
ft. in.
3 6
feet.
4
ft. in.
4 6
feet.
5
ft. in.
5 6
feet.
6
ft. in.
6 6
feet.
7
t. in.
2 6
3 6
4
4 6
5 6
6
6 6
7
29.92
37.40
46.75
44.88
56.10
67.32
52.36
65.45
78.54
91.64
59.84
74.80
89.77
104.73
119.69
67.32
84.16
1 00.99
117.82
134.65
151.48
74.81
93.51
112.21
130.91
149.61
168.31
187.01
82.29
102.86
123.43
144.00
164.57
185.14
205.71
226.28
89.77
112.21
134.65
157.09
179.53
201.97
224.41
246.86
269.30
97.25
121.56
145.87
170.18
194.49
218.80
243.11
267.43
291.74
316.05
104.73
130.91
157.09
183.27
209.45
235.62
261.82
288.00
314.18
340.36
366.54
...
Width
of
Tank.
Length of Tank.
ft. in
7 6
feet.
8
ft. in.
8 6
feet.
9
ft. in
9 6
feet.
10
ft. in
10 6
feet.
11
ft. in
11 6
feet.
13
179.53
224.41
269.30
314.18
359.06
403.94
448.83
493. 7 1
538.59
583.47
628.36
673.24
718.12
763.00
807.89
852.77
897.66
942.56
987.43
1032.3
1077.2
ft. in
2
2 6
3
3 6
4
4 6
5 6
6
6 6
7 6
8
8 6
9
9 6
10
10 6
11
11 6
12
112.21
140.26
168.31
196.36
224.41
25247
280.52
308.57
336.62
364.67
392.72
420.78
119.69
149.61
179.53
209.45
239.37
269.30
299.22
329.14
359.06
388.98
418.91
448.83
478.75
127.17
158.96
190.75
222.54
254.34
286.13
317.92
349.71
381.50
413.30
445.09
476.88
508.67
540.46
134.65
168.31
202.97
235.63
269.30
302.96
336.62
370.28
403.94
437.60
471.27
504.93
538.59
572.25
605.92
142.13
177.66
213.19
248.73
284.26
319.79
355.32
390.85
426.39
461.92
497.45
532.98
568.51
604.05
639.58
675.11
149.61
187.01
224.41
261.82
299.22
336.62
374.03
411.43
448.83
486.23
523.64
561.04
598.44
635.84
673.25
710.65
748.05
157.09
196.36
235.63
274.90
314.18
353.45
392.72
432.00
471.27
510.54
549.81
589.08
628.36
667.63
706.90
746.17
785.45
824.73
164.57
205.71
246.86
288.00
329.14
370.28
411.43
452.57
493.71
534.85
575.99
617.14
658.28
699.42
740.56
781.71
822.86
864.00
905.14
172.05
215.06
258.07
301.09
344.10
387.11
430.13
473.14
516.15
559.16
602.18
645.19
688.20
731.21
774.23
817.24
860.26
903.26
946.27
989.29
134
MATHEMATICAL TABLES.
NUMBER OF BARRELS (31 1-3 GALLONS) IN
CISTERNS AND TANKS.
I barrel = 31^ gallons >
31.5X 231
1728
= 4.21094 cu. ft. Reciprocal -0.2 37 477
Diameter in Feet.
Feet.
5
6
7
8
9
10
11
13
13
14
,
4.663
6.714
9.139
11.937
15.108
18.652 ,
>2.569
26.859
31.522
36.557
5
23.3
33.6
45.7
59.7
75.5
93.3
12.8
134.3
157.6
182.8
6
28.0
40.3
54.8
71.6
90.6
111.9
35.4
161.2
189.1
219.3
7
32.6
47.0
64.0
83.6
105.8
130.6
58.0
188.0
220.7
255.9
8
37.3
53.7
73.1
95.5
120.9
149.2
80.6
214.9
252.2
292.5
9
42.0
60.4
82.3
107.4
136.0
167.9 ;
>03.1
241.7
283.7
329.0
10
46.6
67.1
91.4
119.4
151.1
186.5 ;
Z25.7
268.6
315.2
365.6
11
51.3
73.9
100.5
131.3
166.2
205.2 ;
548.3
295.4
346.7
402.1
12
56.0
80.6
109.7
143.2
181.3
223.8 ;
570.8
322.3
378.3
438.7
13
60.6
87.3
118.8
155.2
196.4
242.5 :
593.4
349.2
409.8
475.2
14
65.3
94.0
127.9
167.1
211.5
261.1 I
16.0
376.0
44 K3
511.8
15
69.9
100.7
137.1
179.1
226.6
279.8 2
38.5
402.9
472.8
548.4
16
74.6
107.4
146.2
191.0
241.7
298.4 2
61.1
429.7
504.4
584.9
17
79.3
114.1
155.4
202.9
256.8
317.1 2
83.7
456.6
535.9
621.5
18
83.9
120.9
164.5
214.9
271.9
335.7 ^
K)6.2
483.5
567.4
658.0
19
88.6
127.6
173.6
226.8
287.1
354.4 ^
128.8
510.3
598.9
694.6
20
93.3
134.3
182.8
238.7
302.2
373.0 *
151.4
537.2
630.4
731.1
Depth
in
Diameter in Feet.
Feet.
15
16
17
18
19
20
21
22
1
41.966
47.748
53.903
60.431
67.33.
I 74.606
82.253
90.273
5
209.8
238.7
269.5
302.2
336.7
373.0
411.3
451.4
6
251.8
286.5
323.4
362.6
404.0
447.6
493.5
541.6
7
293.8
334.2
377.3
423.0
471.3
522.2
575.8
631.9
8
335.7
382.0
431.2
483.4
538.7
596.8
658.0
722.2
9
377.7
429.7
485.1
543.9
606.0
671.5
740.3
812.5
10
419.7
477.5
539.0
604.3
673.3
746.1
822.5
902.7
11
461.6
525.2
592.9
664.7
740.7
820.7
904.8
993.0
12
503.6
573.0
646.8
725.2
808.0
895.3
987.0
1083.3
13
545.6
620.7
700.7
785.6
875.3
969.9
1069.3
1173.5
14
587.5
668.5
754.6
846.0
942.6
1044.5
1151.5
1263.8
15
629.5
716.2
808.5
906.5
1010.0
1119.1
1233.8
1354.1
16
671.5
764.0
862.4
966.9
1077.3
1193.7
1316.0
1444.4
17
713.4
811.7
916.4
1027.3
1144.6
1268.3
1398.3
1534.5
18
755.4
859.5
970.3
1087.8
1212.0
1342.9
1480.6
1624.9
19
797.4
907.2
1024.2
1148.2
1279.3
1417.5
1562.8
1715.2
20
839.3
955.0
1078.1
1208.6
1346.6
1492.1
1645.1
1805.5
i
LOGARITHMS OF NUMBERS.
135
NUMBER OF BARBELS (31 1-2 GALLONS) IN CISTERNS
AND TANKS. — Continued.
Depth
in
Feet.
Diameter in Feet.
23
24
25
26
27
28
29
30
1
5
98.666
493.3
107.432
537.2
116.571
582.9
126.083
630.4
135.968
679.8
146.226
731.1
156.858
784.3
167.863
839.3
6
592.0
644.6
699.4
756.5
815.8
877.4
941.1
1007.2
7
690.7
752.0
316.0
882.6
951.8
1023.6
1098.0
1175.0
8
789.3
859.5
932.6
1008.7
1087.7
1169.8
1254.9
1342.9
9
888.0
966.9
1049.1
1134.7
1223.7
1316.0
1411.7
1510.8
to
986.7
1074.3
1165.7
1260.8
1359.7
1462.2
1 568.6
1678.6
11
1085.3
1 181.8
1282.3
1386.9
1495.6
1608.5
1725.4
1846.5
12
1184.0
1289.2
1398.8
1513.0
1631.6
1754.7
1882.3
2014.4
13
1282.7
1396.6
1515.4
1639.1
1767.6
1900.9
2039.2
2182.2
14
1381.3
1504.0
1632.0
1765.2
1903.6
2047.2
2196.0
2350.1
15
1480.0
1611.5
1 748.6
1891.2
2039.5
2193.4
2352.9
2517.9
16
1578.7
1718.9
1865.1
2017.3
2175.5
2339.6
2509.7
2685.8
17
1677.3
1826.3
1981.7
2143.4
2311.5
2485.8
2666.6
2853.7
18
1776.0
1933.8
2098.3
2269.5
2447.4
2632.0
2823.4
3021.5
19
1874.7
2041.2
2214.8
2395.6
2583.4
2778.3
2980.3
3189.4
20
1973.3
2148.6
2321.4
2521.7
2719.4
2924.5
3137.2
3357.3
LOGARITHMS.
Logarithms (abbreviation log). — The log of a number is the exponent
of the power to which it is necessary to raise a fixed number to produce
the given number. The fixed number is called the base. Thus if the
base is 10, the log of 1000 is 3, for 103 = 1000. There are two systems
of logs in general use, the common, in which the base is 10, and the Naperian,
or hyperbolic, in which the base is 2.718281828 .... The Naperian base
is commonly denoted by e, as in the equation ey — x, in which y is the
Nap. log of a:. The abbreviation loge is commonly used to denote the
Nap log.
In any system of logs, the log of 1 is 0; the log of the base, taken in that
system, is 1. In any system the base of which is greater than 1, the logs of
all numbers greater than 1 are positive and the logs of all numbers less
than 1 are negative.
The modulus of any system is equal to the reciprocal of the Naperian log
of the base of that system. The modulus of the Naperian system is 1 , that
of the common system is 0.4342945.
The log of a number in any system equals the modulus of that system X
the Naperian log of the number.
The hyperbolic or Naperian log of any number equals the common
logX 2.3025851.
Every log consists of two parts, an entire part called the characteristic.
or index, and the decimal part, or mantissa. The mantissa only is given
in the usual tables of common logs, with the decimal point omitted. The
characteristic is found by a simple rule, viz., it is one less than the number
of figures to the left of the decimal point in the number whose log is to be
found. Thus the characteristic of numbers from 1 to 9.99 + is 0, from
10 to 99.99 4- is 1, from 100 to 999 -f is 2, from 0.1 to 0.99 + is - 1, from
0.01 to 0.099 + is -2, etc. Thus
log of 2000 is 3.30103; log of 0.2
•• " oon " 2.30103; " " 0.02
200 ,
20 " 1.30103;
2 " Q.30103;
is - 1.30103, or 9.30103 - 10
" - 2.30103, " 8.30103 - 10
0.002 " - 3.30103, " 7.30103 - 10
1* 0,0002 " - 4,30103, '! Q.301Q3 - IQ
136 LOdARITHMS OF NUMBERS.
The minus sign is frequently written above the characteristic thusi
log 0.002 = 3.30103. The characteristic only is negative, the decimal part,
or mantissa, being always positive.
When a log consists of a negative index and a positive mantissa, it is
usual to write the negative sign over the index, or else to add 10 to the
index, and to indicate the subtraction of 10 from the resulting logarithm.
Thus log 0.2 = 1.30103, and this may be written 9.30103 - 10.
In tables of logarithmic sines, etc., the — 10 is generally omitted, as
being understood.
Rules for use of the table of logarithms. — To find the log of any
whole number. — For 1 to 100 inclusive the log is given complete in the
small table on page 137.
For 100 to 999 inclusive the decimal part of the log is given opposite the
given number in the column headed 0 in the table (including the two
figures to the left, making six figures). Prefix the characteristic, or
index, 2.
For 1000 to 9999 inclusive: The last four figures of the log are found
• opposite the first three figures of the given number and in the vertical
column headed with the fourth figure of the given number ; prefix the two
figures under column 0, and the index, which is 3.
For numbers over 10,000 having five or more digits: Find the decimal
part of the log for the first four digits as above, multiply the difference
figure in the last column by the remaining digit or digits, and divide by 10
if there be only one digit more, by 100 if there be two more, and so on;
add the quotient to the log of the first four digits and prefix the index,
which is 4 if there are five digits, 5 if there are six digits, and so on. The
table of proportional parts may be used, as shown below.
To find the log of a decimal fraction or of a whole number and a
'decimal. — First find the log of the quantity as if there were no decimal
Doint, then prefix the index according to rule: the index is one less than
the number of figures to the left of the decimal point.
Example, log of 3.14159. log of 3.141 =0.497068. Diff. =-138
From proportional parts 5 = 690
09= 1242
log 3. 14159 0.4971494
If the number is a decimal less than unity, the index is negative
and is one more than the_ number of zeros to the right of the decimal
point. Log of 0.0682 = 2.833784 = 8.833784 - 10.
To find the number corresponding to a given log. — Find in the
table the log nearest to tne decimal part of the given log and take the
first four digits of the required number from the column N and the top or
foot of the column containing the log which is the next less thanthegiven
log. To find the 5th and 6th digits subtract the log in the table from the
given log, multiply the difference by 100, and divide by the figure in the
Diff. column opposite the log; annex the quotient to the four digits
already found, and place the decimal point according to the rule; the
number of figures to the left of the decimal point is one greater than the
index. The number corresponding to a log is called the anti-logarithm.
Find the anti-log of 0.497150
Next lowest log in table corresponds to 3141 0.497068 Diff. = 82
Tabular diff. = 138; 82 -f- 138 = 0.59 -f-
The index being 0, the number is therefore 3.14159 -f .
To multiply two numbers by tlie use of logarithms. — Add together
the logs of the two numbers, and find' the number whose log is the sum.
To divide two numbers. — Subtract the log of the divisor from the
log of the dividend, and find the number whose log is the difference.
Log of a fraction. Log of a/b = log a — log b.
To raise a number to any given power. — Multiply the log of the
number by the exponent of the power, and find the number whose log
is the product.
To find any root of a given number. — Divide the log of the number
index of the root. The quotient is tlje log, of tfce root.
IiOGAUITHMS OP NUMBERS.
137
To find the reciprocal of a number. — Subtract the decimal pait
of the log of the number from 0, add 1 to the index and change the sign of
the index. The result is the log of the reciprocal.
Required the reciprocal of 3.141593.
Log of 3.141593, as found above 0.4971498
Subtract decimal part from 0 gives 0.5028502
Add 1 to the index, and changing sign of the index gives. . 1. 5028502
which is the log of 0.31831.
To find the fourth term of a proportion by logarithms. — Add
the logarithms of the second and third terms, and from their sum subtract
the logarithm of the first term.
When one logaithm is to be subtracted from another, it may be more
convenient to convert the subtraction into an addition, which may be
done by first subtracting the given logarithm from 10, adding the difference
to the other logarithm, and afterwards rejecting the 10.
The difference between a given logarithm and .10 is called its arithmetical
complement, or cologarithm.
To subtract one logarithm from another is the same as to add its com-
plement and then reject 10 from the result. For a — b = 10 — b+ a — 10.
To work a proportion, then, by logarithms, add the complement of the
logarithm of the first term to the logarithms of the second and third terms.
The characteristic must afterwards be diminished by 10.
Example in logarithms with a negative index. — Solve by
logarithms
Vioii
quotient to the 2.45 power.
log 526 = 2.720986
log 1011 = 3.004751
which means divide 526 by 1011 and raise the
log of quotient =
Multiply by
9.716235 - 10
2.45
.48581175
3.8864940
19.432470
23. 80477575 -(10X2.45) = 1.30477575 = 0.20173, Ans.
LOGARITHMS OF NUMBERS FROM 1 TO 100.
N.
Log.
N.
Log.
N.
Log.
N.
Log.
N.
Log.
!
0.000000
21
.322219
41
.612784
61
.785330
81
.908485
2
0.301030
22
.342423
42
.623249
62
.792392
82
.913814
0.477121
23
.361728
43
.633468
63
.799341
83
.919078
4
0.602060
24
.380211
44
.643453
64
.806180
84
.924279
0.698970
25
.397940
45
.653213
65
.812913
85
.929419
6
0.778151
26
.414973
46
.662758
66
.819544
86
.934498
7
0.845098
27
.431364
47
.672098
67
.826075
87
.939519
8
0.903090
28
.447158
48
.681241
68
.832509
88
.944483
9
0.954243
29
.462398
49
.690196
69
.838849
89
.949390
10
1 .000000
30
.477121
50
.698970
70
.845098
90
.954243
11
.041393
31
.491362
51
.707570
71
.851258
91
.959041
12
.079181
32
.505150
52
.716003
72
.857332
92
.963788
13
.113943
33
.518514
53
.724276
73
.863323
93
.968483
14
.146128
34
.531479
54
.732394
74
.869232
94
.973128
15
.176091
35
.544068
55
.740363
75
.875061
95
977724
16
.204120
36
.556303
56
.748188
76
.880814
96
.982271
17
230449
37
.568202
57
.755875
77
.886491
97
.966772
18
.255273
38
.579784
58
.763428
78
.892095
98
.991226
19
.278754
39
.591065
59
.770852
79
.897627
99
.995635
20
1.301030
40
.602060
60
.778151
80
.903090
100
2.000000
For four-place logarithms see page
138
LOGARITHMS OF NUMBERS.
No. 100 L. OOO.j
[No. 109 L. 040.
N.
0
1
3
0868
5181
9451
3
4
5
6
7
8
346~1
7748
9
3891
8174
Diff.
432'
428
424
420
416
412
408
404
400
397
100
1
2
3
4
5
6
8
9
000000
4321
8600
0434
4751
9026
1301
5609
9876
1734
6038
2166
6466
2598
6894
3029
7321
0300
4521
8700
0724
4940
9116
1147
5360
9532
1570
5779
9947
1993
6197
2415
6616
012837
7033
3259
7451
3680
7868
4100
8284
0361
4486
8571
2619
6629
0775
4896
8978
021189
5306
9384
1603
5715
9789
2016
6125
2428
6533
2841
6942
3252
7350
3664
7757
4075
8164
0195
4227
8223
0600
4628
8620
1004
5029
9017
1408
5430
9414
1812
5830
9811
2216
6230
3021
7028
033424
7426
04
3826
7825
0207
0602
0998
PROPORTIONAL PARTS.
Diff.
1
2
3
4
5
6
7
8
9
434"
43.4
86.8
130.2
173.6
217.0
260.4
303.8
347.2
390.6
433
43.3
86.6
129.9
173.2
216.5
259.8
303.1
346.4
389.7
432
43.2
86.4
129.6
172.8
216.0
259.2
302.4
345.6
388.8
431
43.1
86.2
129.3
172.4
215.5
258.6
301.7
344.8
387.9
430
43.0
86.0
129.0
172.0
215.0
258.0
301.0
344.0
387.0
429
42.9
85.8
128.7
171.6
214.5
257.4
300.3
343.2
386.1
428
42.8
85.6
128.4
171.2
214.0
256.8
299.6
342.4
385.2
427
42.7
85.4
128.1
170.8
213.5
256.2
298.9
341.6
384.3
426
42.6
85.2
127.8
170.4
213.0
255.6
298.2
340.8
383.4
425
42.5
85.0
127.5
170.0
212.5
255.0
297.5
340.0
382.5
424
42.4
84.8
127.2
169.6
212.0
254.4
296.8
339.2
381.6
423
42.3
84.6
126.9
169.2
211.5
253.8
296.1
338.4
380.7
422
42.2
84.4
126.6
168.8
211.0
253.2
295.4
337.6
379.8
421
42.1
84.2
126.3
168.4
210.5
252.6
294.7
336.8
378.9
420
42.0
84.0
126.0
168.0
210.0
252.0
294.0
336.0
373.0
419
41.9
83.8
125.7
167.6
209.5
251.4
293.3
335.2
377.1
418
41.8
83.6
125.4
167.2
209.0
250.8
292.6
334.4
376.2
417
41.7
83.4
125.1
166.8
208.5
250.2
291.9
333.6
375.3
416
41.6
83.2
124.8
166.4
208.0
249.6
291.2
332.8
374.4
415
41.5
83.0
124.5
166.0
207.5
249.0
290.5
332.0
373.5
414
41.4
82.8
124.2
165.6
207.0
248.4
289.8
331.2
372.6
413
41.3
82.6
123.9
165.2
206.5
247.8
289.1
330.4
371.7
412
41.2
82.4
123.6
164.8
206.0
247.2
288.4
329.6
370.8
>11
41.1
82.2
123.3
164.4
205.5
246.6
287.7
328.8
369.9
410
41.0
82.0
123.0
164.0
205.0
246.0
287.0
328.0
369.0
409
40.9
81.8
122.7
163.6
204.5
245.4
286.3
327.2
368.1
408
40.8
81.6
122.4
163.2
204.0
244.8
285.6
326.4
367.2
407
40.7
81.4
122.1
162.8
203.5
244.2
284.9
325.6
366.3
406
40.6
81.2
121.8
162.4
203.0
243.6
284.2
324.8
365.4
405
40.5
81.0
121.5
162.0
202.5
243.0
283.5
324.0
364.5
404
40.4
80.8
121.2
161.6
202.0
242.4
282.8
323.2
363.6
403
40.3
80.6
120.9
161.2
201.5
241.8
282.1
322.4
362.7
402
40.2
80.4
120.6
160.8
201.0
241.2
281.4
321.6
361.8
401
40.1
80.2
120.3
160.4
200.5
240.6
280.7
320.8
360.9
400
40.0
80.0
120.0
160.0
200.0
240.0
280.0
320.0
360.0
399
39.9
79.8
119.7
159.6
199.5
239.4
279.3
319.2
359.1
398
39.8
79.6
119.4
159.2
199.0
238.8
278.6
318.4
358.2
397
39.7
79.4
119.1
158.8
198.5
238.2
277.9
317.6
357.3
396
39.6
79.2
118.8
158.4
198.0
237.6
277.2
316.8
356.4
395
39.5
79.0
118.5
158.0
197.5
237.0
276.5
316.0
355.5
LOGARITHMS OF NUMBERS.
139
No. 110 L. 041.]
[No. 119 L. 078.
N.
0
1
2
3
4
5
6
7
8
9
Diff.
no
i
2
3
4
5
6
7
8
9
041393
5323
9218
1787
5714
9606
2182
6105
9993
2576
6495
0380
4230
8046
2969
6885
0766
4613
8426
3362
7275
3755
7664
4148
8053
4540
8442
4932
8830
393
390
386
383
379
376
373
370
366
363
1153
4996
8805
1538
5378
9185
1924
5760
9563
2309
6142
9942
2694
6524
0320
4083
7815
053078
6905
3463
7286
3846
7666
060698
4458
8186
1075
4832
8557
1452
5206
8928
1829
5580
9298
2206
5953
9668
2582
6326
2958
6699
3333
7071
3709
7443
0038
3718
7368
0407
4085
7731
0776
4451
8094
1145
4816
8457
1514
5182
8819
071882
5547
2250
5912
2617
6276
2985
6640
3352
7004
PROPORTIONAL PA.RTS.
Diff.
1
2
3
4
5
6
7
8
9
395
39.5
79.0
118.5
158.0
197.5
237.0
276.5
316.0
355.5
394
39.4
78.8
T18.2
157.6
197.0
236.4
275.8
315.2
354.6
393
39.3
78.6
1 17.9
157.2
196.5
235.8
275.1
314.4
353.7
392
39.2
78.4
117.6
156.8
196.0
235.2
274.4
313.6
352.8
391
39.1
78.2
117.3
156.4
195.5
234.6
273.7
312.8
351.9
390
39.0
78.0
117.0
156.0
195.0
234.0
273.0
312.0
351.C
389
38.9
77.8
116.7
155.6
194.5
233.4
272.3
311.2
350.1
388
38.8
77.6
116.4
155.2
194.0
232.8
271.6
310.4
349.2
387
38.7
77.4
116.1
154.8
193.5
232.2
270.9
309.6
348.3
386
38.6
77.2
115.8
154.4
193.0
231.6
270.2
308.8
347.4
385
38.5
77.0
115.5
154.0
192.5
231.0
269.5
308.0
346.?
384
38.4
76.8
115.2
153.6
192.0
230.4
268.8
307.2
345.6
383
38.3
76.6
114.9
153.2
191.5
229.8
268.1
306.4
344.7
382
38.2
76.4
114.6
152.8
191.0
229.2
267.4
305.6
343.8
381
38.1
76.2
114.3
152.4
190.5
228.6
266.7
304.8
342.9
380
38.0
76.0
114.0
152.0
1900
228.0
266.0
304.0
342.0
379
37.9
75.8
113.7
151.6
189.5
227.4
265.3
303.2
341.1
378
37.8
75.6
113.4
151.2
189.0
226.8
264.6
302.4
340.2
377
37.7
75.4
113.1
150.8
188.5
226.2
263.9
301.6
339.3
376
37.6
75.2
112.8
150.4
188.0
225.6
263.2
300.8
338.4
375
37.5
75.0
112.5
150.0
187.5
225.0
262.5
300.0
337.5
374
37.4
74.8
112.2
149.6
187.0
224.4
261.8
299.2
336.6
373
37.3
74.6
111.9
149.2
186.5
223.8
261.1
298.4
335.7
372
37.2
74.4
111.6
148.8
186.0
223.2
260.4
297.6
334.8
371
37.1
74.2
111.3
148.4
185.5
222.6
259.7
296.8
333.9
370
37.0
74.0
111.0
148.0
185.0
222.0
259.0
296.0
333.0
369
36.9
73.8
110.7
147.6
184.5
221.4
258.3
295.2
332.1
368
36.8
73.6
110.4
147.2
184.0
220.8
257.6
294.4
331.2
367
36.7
73.4
110.1
146.8
183.5
220.2
256.9
293.6
330.3
366
36.6
73.2
109.8
146.4
183.0
219.6
256.2
292.8
329.4
365
36.5
73.0
109.5
146.0
182.5
219.0
255.5
292.0
328.5
364
36.4
72.8
109.2
145.6
182.0
218.4
254.8
291.2
327.6
363
36.3
72.6
108.9
145.2
181.5
217.8
254.1
290.4
326.7
362
36.2
72.4
108.6
144.8
181.0
217.2
253.4
289.6
325.8
361
36.1
72.2
108.3
144.4
180.5
216.6
252.7
288.8
324.9
360
36.0
72.0
108.0
144.0
180.0
216.0
252.0
288.0
324.0
359
35.9
71.8
107.7
143.6
179.5
215.4
251.3
287.2
323.1
358
35.8
71.6
107.4
143.2
179.0
214.8
250.6
286.4
322.2
357
35.7
71.4
107.1
142.8
178.5
214.2
249.9
285.6
32!. 3
356
35.6
71.2
106.8
142.4
178.0
213.6
249.2
284.8
320.4
140
LOGARITHMS OF NUMBERS.
No. 120 L. 079.]
[No. 134 L. 130.
N.
0
1
3
3
4
5
6
7
8
9
Diff.
120
2
4
5
6
7
8
9
130
1
2
3
4
079181
9543
9904
0266
3861
7426
0626
4219
7781
0987
4576
8136
1347
4934
8490
1707
5291
8845
2067
5647
9198
2426
6004
9552
360
357
355
352
349
346
343
341
338
335
333
330
328
325
323
082785
6360
9905
3144
6716
3503
7071
0258
3772
7257
0611
4122
7604
0963
4471
7951
1315
4820
8298
1667
5169
8644
2018
5518
8990
2370
5866
9335
2721
6215
9681
3071
6562
093422
6910
0026
3462
6871
100371
3804
7210
0715
4146
7549
1059
4487
7888
1403
4828
8227
1747
5169
8565
2091
5510
8903
2434
5851
9241
2777
6191
9579
3119
6531
9916
0253
3609
6940
110590
3943
725 '1
0926
4277
7603
1263
4611
7934
1599
4944
8265
1934
5278
8595
2270
5611
8926
2605
5943
9256
2940
6276
9586
3275
6608
9915
0245
3525
6781
120574
3852
7105
13
0903
4178
7429
1231
4504
7753
1560
4830
8076
1888
5156
8399
2216
5481
8722
2544
5806
9045
2871
6131
9368
3198
6456
9690
0012
PROPORTIONAL PARTS.
Diff.
1
3
3
4
5
6
7
8
9
355"
35.5
71.0
106.5
142.0
177.5
213.0
248.5
284.0
319.5
354
35.4
70.8
106.2
141.6
177.0
212.4
247.8
283.2
318.6
353
35.3
70.6
105.9
141.2
176.5
211.8
247.1
282.4
317.7
352
35.2
70.4
105.6
140.8
176.0
211.2
246.4
281.6
316.8
351
35.1
70.2
105.3
140.4
175.5
210.6
245.7
280.8
315.9
350
35.0
70.0
105.0
140.0
175.0
210.0
245.0
280.0
315.0
349
34.9
69.8
104.7
139.6
174.5
209.4
244.3
279.2
314.1
348
34.8
69.6
104.4
139.2
174.0
208.8
243.6
278.4
313.2
347
34.7
694
104.1
138.8
173.5
208.2
242.9
277.6
312.3
346
34.6
69.2
103.8
138.4
173.0
207.6
242.2
276.8
311 4
345
34.5
69.0
103.5
138.0
172.5
207.0
241.5
276.0
310.5
344
34.4
68.8
103.2
137.6
172.0
206.4
240.8
275.2
309.6
343
34.3
68.6
102.9
137.2
171.5
205.8
240.1
274.4
308.7
342
34.2
68.4
102.6
136.8
171.0
205.2
239.4
273.6
307.8
341
34.1
68.2
102.3
136.4
170.5
204.6
238.7
272.8
306.9
340
34.0
68.0
102.0
136.0
170.0
204.0
238.0
272.0
306.0
339
33.9
67.8
101.7
135.6
169.5
203.4
237.3
271.2
305.1
338
33.8
67.6
101.4
135.2
169.0
202.8
236.6
270.4
304.2
337
33.7
67.4
101.1
134.8
168.5
202.2
235.9
269.6
303.3
336
33.6
67.2
100.8
134.4
168.0
201.6
235.2
268.8
302.4
335
33.5
67.0
100.5
134.0
167.5
201.0
234.5
268.0
301.5
334
33.4
66.8
100.2
133.6
167.0
200.4
233.8
267.2
300.6
333
33.3
66.6
99.9
133.2
166.5
199.8
233.1
266.4
299.7
332
33.2
66.4
99.6
132.8
166.0
199.2
232.4
265.6
298.8
331
33.1
66.2
99.3
132.4
165.5
198.6
231.7
264.8
297.9
330
33.0
66.0
99.0
132.0
165.0
198.0
231.0
264.0
297.0
329
32.9
65.8
98.7
131.6
164.5
197.4
230.3
263.2
296.1
328
32.8
65.6
98.4
131.2
164.0
196.8
229.6
262.4
295.2
327
32.7
65.4
98.1
130.8
163.5
196.2
228.9
261.6
294.3
326
32.6.
65.2
97.8
130.4
163.0
195.6
228.2
260.8
293.4
325
32.5
65.0
97.5
130.0
162.5
195.0
227.5
260.0
292.5
324
32.4
64.8
97.2
129.6
162.0
194.4
226.8
259.2
291.6
323
32.3
64.6
96.9
129.2
161.5
193.8
226.1
258.4
290.7
322
32.2
64.4
96.6
128.8
161.0
193.2
225.4
257.6
289.8
LOGARITHMS OF NUMBERS.
141
No. 135 L. 130.]
[No. 149 L. 175.
N.
O
1
3
3
4
5
6
7
8
9
Diff.
~32T
318
316
314
311
309
307
305
303
301
299
297
295
293
291
135
6
7
8
9
140
2
3
4
5
6
7
8
9
130334
3539
6721
9879
0655
3858
7037
0977
4177
7354
1298
4496
7671
1619
4814
7987
1939
5133
8303
2260
5451
8618
2580
5769
8934
2900
6086
9249
3219
6403
9564
0194
3327
6438
9527
0508
3639
6748
9835
0822
3951
7058
1136
4263
7367
1450
4574
7676
1763
4885
7985
2076
5196
8294
2389
5507
8603
2702
5818
8911
143015
6128
9219
0142
3205
6246
9266
0449
3510
6549
9567
0756
3815
6852
9868
1063
4120
7154
1370
4424
7457
1676
4728
7759
1982
5032
8061
152288
5336
8362
2594
5640
8664
2900
5943
8965
0168
3161
6134
9086
0469
3460
6430
9380
0769
3758
6726
9674
1068
4055
7022
9968
161368
4353
7317
1667
4650
7613
1967
4947
7908
2266
5244
8203
2564
5541
8497
2863
5838
8792
1 70262
3186
0555
3478
0348
3769
1141
4060
1434
4351
1726
4641
2019
4932
2311
5222
2603
5512
2895
5802
PROPORTIONAL PARTS.
Diff.
1
3
3
4
5
6
7
8
9
321
32.1
64.2
96.3
128.4
160.5
192.6
224.7
256.8
288.9
320
32.0
64.0
96.0
128.0
160.0
192.0
224.0
256.0
2880
319
31.9
63.8
95.7
127.6
159.5
191.4
223.3
255.2
287.1
318
31.8
63.6
95.4
127.2
159.0
190.8
222.6
254.4
286.2
317
31.7
63.4
95.1
126.8
158.5
190.2
221.9
253.6
285.3
316
31.6
63.2
94.8
126.4
158.0
189.6
221.2
252.8
284.4
315
31.5
63.0
94.5
126.0
157.5
189.0
220.5
252.0
283.5
314
31.4
62.8
94.2
125.6
157.0
188.4
219.8
251.2
282.6
313
31.3
62.6
93.9
125.2
156.5
187.8
219.1
250.4
281.7
312
31.2
62.4
93.6
124.8
156.0
187.2
218.4
249.6
280.8
311
31.1
62.2
93.3
124.4
155.5
186.6
217.7
248.8
279.9
310
31.0
62.0
93.0
124.0
155.0
186.0
217.0
248.0
279.0
309
30.9
61.8
92.7
123.6
154.5
185.4
216.3
247.2
278.1
308
30.8
61.6
92.4
123.2
154.0
184.8
215.6
246.4
277.2
307
30.7
61.4
92.1
122.8
153.5
184.2
214.9
245.6
276.3
306
30.6
61.2
91.8
122.4
153.0
183.6
214.2
244.8
275.4
305
30!5
61.0
91.5
122.0
152 5
183.0
213.5
244.0
274.5
304
30.4
60.8
91.2
121.6
152.0
182.4
212.8
243.2
273.6
303
30.3
60.6
90.9
121.2
151.5
181.8
212.1
242.4
272.7
302
30.2
60.4
90.6
120.8
151.0
181.2
211.4
241.6
271.8
301
30.1
60.2
90.3
120.4
150.5
1806
210.7
240.8
270.9
300
30.0
60.0
90.0
120.0
150.0
180.0
210.0
240.0
270.0
299
29.9
59.8
89.7
119.6
149.5
179.4
209.3
239.2
269.1
298
29.8
59.6
89.4
119.2
149.0
178.8
208.6
238.4
268.2
297
29.7
59.4
89.1
118.8
148.5
178.2
207.9
237.6
267.3
296
29.6
59.2
88.8
118.4
148.0
177.6
207.2
236.8
266.4
295
29.5
590
88.5
118.0
147.5
177.0
206.5
236.0
265.5
294
29.4
58.8
88.2
117.6
147.0
176.4
205.8
235.2
264.6
293
29.3
58.6
87.9
117.2
146.5
175.8
205.1
234.4
263.7
292
29.2
58.4
87.6
116.8
146,0
175.2
204.4
233.6
262.8
291
29.1
58.2
87.3
116.4
145.5
174.6
203.7
232.8
261.9
290
29.0
58.0
87.0
116.0
145.0
174.0
203.0
232.0
261..
289
28.9
57.8
86.7
115.6
144.5
173.4
202.3
231.2
260.1
288
28.8
57.6
86.4
115.2
144.0
172.3
201.6
230.4
259.2
287
28.7
57.4
86.1
114.8
143.5
172.2
200.9
229.6
258.3
286
28.6
57.2
85.8
114.4
143.0
171.6
200.2
228.8
2*7.4
142
LOGARITHMS OP NUMBERS.
Wo. 150 L. 176.]
[No. 109 L. 230
N.
~T50"
2
4
5
6
7
8
9
160
2
3
4
6
8
9
0
1
3
3
4
5
6
7
8
9
DiflF.
-28T
287
285
283
281
279
278
276
274
272
271
269
267
266
264
262
261
259
258
256
176091
8977
6381
9264
6670
9552
6959
9839
7248
7536
7825
8113
8401
8689
0126
2985
5825
8647
0413
3270
6108
8928
0699
3555
6391
9209
0986
3839
6674
9490
1272
4123
6956
9771
1558
4407
7239
181844
4691
7521
2129
4975
7803
2415
5259
8084
2700
5542
8366
0051
2846
5623
8382
190332
3125
5900
8657
0612
3403
6176
8932
0892
3681
6453
9206
1171
3959
6729
9481
1451
4237
7005
9755
1730
4514
7281
2010
4792
7556
2289
5069
7832
2567
5346
8107
0029
2761
5475
8173
0303
3033
5746
8441
0577
3305
6016
8710
0850
3577
6286
8979
1124
3848
6556
9247
201397
4120
6826
9515
1670
4391
7096
9783
1943
4663
7365
2216
4934
7634
2488
5204
7904
0051
2720
5373
8010
0319
2986
5638
8273
0586
3252
5902
8536
0853
3518
6166
8798
1121
3783
6430
9060
1388
4049
6694
9323
1654
4314
6957
9585
1921
4579
7221
9846
212188
4844
7484
2454
5109
7747
220108
2716
5309
7887
23
0370
2976
5568
8144
0631
3236
5826
8400
0892
3496
6084
8657
1153
3755
6342
8913
1414
4015
6600
9170
1675
4274
6858
9426
1936
4533
7115
9682
2196
4792
7372
9938
2456
5051
7630
0193
PROPORTIONAL PARTS.
Diff.
1
2
3
4
5
6
7
8
9
285
28.5
57.0
85.5
114.0
142.5
171.0
199.5
228.0
256.5
,784
28.4
56.8
85.2
113.6
142.0
170.4
198.8
227.2
255.6
283
28.3
56.6
84.9
113.2
141.5
169.8
198.1
226.4
254.7
282
28.2
56.4
84.6
112.8
141.0
169.2
197.4
225.6
253.8
281
28.1
56.2
84.3
112.4
140.5
168.6
196.7
224.8
252.9
280
28.0
56.0
84.0
112.0
140.0
168.0
196.0
224.0
252.0
279
27.9
55.8
83.7
111.6
139.5
167.4
195.3
223.2
251.1
278
27.8
55.6
83.4
111.2
139.0
166.8
194.6
222.4
250.2
277
27.7
55.4
83.1
110.8
138.5
166.2
193.9
221.6
249.3
276
27.6
55.2
82.8
110.4
138.0
165.6
193.2
220.8
248.4
275
27.5
55.0
82.5
110.0
137.5
165.0
192.5
220.0
247.5
274
27.4
54.8
82.2
109.6
137.0
164.4
191.8
219.2
246.6
273
27.3
54.6
81.9
109,2
136.5
163.8
191.1
218.4
245.7
272
27.2
54.4
81.6
108.8
136.0
163.2
190.4
217.6
244.8
271
27.1
54.2
81.3
108.4
135.5
162.6
189.7
216.8
243.9
270
27.0
54.0
81.0
108.0
135.0
162.0
189.0
216.0
243.0
269
26.9
53.8
80.7
107.6
134.5
161.4
188.3
215.2
242.1
268
26.8
53.6
80.4
107.2
134.0
160.8
187.6
214.4
241.2
267
26.7
53.4
80.1
106.8
133.5
160.2
186.9
213.6
240.3
266
26.6
53.2
79.8
106.4
133.0
159.6
186.2
212.8
239.4
265
26.5
53.0
79.5
106.0
132.5
159.0
185.5
212.0
238.5
264
26.4
52.8
79.2
105.6
132.0
158.4
184.8
211.2
237.6
263
26.3
52.6
78.9
105.2
131.5
157.8
184.1
210.4
236.7
262
26.2
52.4
78.6
104.8
131.0
157.2
183.4
209.6
235.8
261
26.1
52.2
78.3
104.4
130.5
156.6
182.7
208.8
234.9
260
26.0
52.0
78.0
104.0
130.0
156.0
182.0
208.0
234.0
259
25.9
51.8
77.7
103.6
129.5
155.4
181.3
207.2
233.1
258
25.8
51.6
77.4
103.2
129.0
154.8
180.6
206.4
232.2
257
25.7
51.4
77.1
102.8
128.5
154.2
179.9
205.6
231.3
256
25.6
51.2
76,8
102.4
128.0
153.6
179.2
204.8
230.4
255
25.5
51.0
76.5 '
102.0
127.5 '
153.0
178.5
204.0 i
229J
LOGARITHMS OF NUMBERS.
143
No. I VOL. 230.]
[No. 189L.278.
N.
17o~
i
2
3
4
6
7
8
9
180
1
2
3
4
5
6
8
9
0
1
2
3
4
5
6
7
8
9
Diff.
230449
2996
5528
8046
0704
3250
5781
8297
0960
3504
6033
8548
1215
3757
6285
8799
1470
4011
6537
9049
1724
4264
6789
9299
1979
4517
7041
9550
2234
4770
7292
9800
2488
5023
7544
2742
5276
7795
255
253
252
250
249
248
246
245
243
242
241
239
238
237
235
234
233
232
230
229
0050
2541
5019
7482
9932
0300
2790
5266
7728
240549
3038
5513
7973
0799
3286
5759
8219
1048
3534
6006
8464
1297
3782
6252
8709
1546
4030
6499
8954
1795
4277
6745
9198
2044
4525
6991
9443
2293
4772
7237
9687
0176
2610
5031
7439
9833
250420
2853
5273
7679
0664
3096
5514
7918
0908
3338
5755
8158
1151
3580
5996
8398
1395
3822
6237
8637
1638
4064
6477
8877
1881
4306
6718
9116
2125
4548
6958
9355
2368
4790
7198
9594
260071
2451
4818
7172
9513
0310
2688
5054
7406
9746
0548
2925
5290
7641
9980
0787
3162
5525
7875
1025
3399
5761
81 10
1263
3636
5996
8344
1501
3873
6232
8578
1739
4109
6467
8812
1976
4346
6702
9046
2214
4582
6937
9279
0213
2538
4850
7151
0446
2770
5081
7380
0679
3001
5311
•7609
0912
3233
5542
7838
1144
3464
5772
8067
1377
3696
6002
8296
1609
3927
6232
8525
271842
4158
6462
2074
4389
6692
2306
4620
6921
PROPORTIONAL PARTS.
Diff.
1
2
3
4
5
6
7
8
9
255
25.5
51.0
76.5
102.0
127.5
153.0
178.5
204.0
229.5
254
25.4
50.8
76.2
101.6
127.0
152.4
177.8
203.2
228.6
253
25.3
50.6
75.9
101.2
126.5
151.8
177.1
202.4
227.7
252
25.2
50.4
75.6
100.8
126.0
151.2
176.4
201.6
226.8
251
25.1
50.2
75.3
100.4
125.5
150.6
175.7
200.8
225.9
250
25.0
50.0
75.0
100.0
125.0
150.0
175.0
200.0
225.0
249
24.9
49.8
74.7
99.6
124.5
149.4
174.3
199.2
224.1
248
24.8
49.6
74.4
99.2
124.0
148.8
173.6
198.4
223.2
247
24.7
49.4
74.1
98.8
123.5
148.2
172.9
197.6
222.3
246
24.6
49.2
73.8
98.4
123.0
147.6
172.2
196.8
221.4
245
24.5
49.0
73.5
98.0
122.5
147.0
171.5
196.0
220.5
244
24.4
48.8
73.2
97.6
122.0
146.4
170.8
195.2
219.6
243
24.3
48.6
72.9
97.2
121.5
145.8
170.1
194.4
218.7
242
24.2
48.4
72.6
96.8
121.0
145.2
1694
193.6
217.8
241
24.1
48.2
72.3
96.4
120.5
144.6
168.7
192.8
216.9
240
24.0
48.0
72.0
96.0
120.0
144.0
168.0
192.0
216.0
239
23.9
47.8
71.7
95.6
119.5
143.4
167.3
191.2
215.1
238
23.8
47.6
71.4
95.2
119.0
142.8
166.6
190.4
214.2
237
23.7
47.4
71.1
94.8
118.5
142.2
165.9
189.6
213.3
236
23.6
47.2
70.8
94.4
118.0
141.6
165.2
188.8
212.4
235
23.5
47.0
70.5
94.0
117.5
141.0
164.5
188.0
211.5
234
23.4
46.8
70.2
93.6
117.0
140.4
163.8
187.2
210.6
233
23.3
46.6
69.9
93.2
116.5
139.8
163.1
186.4
209.7
232
23.2
46.4
69.6
92.8
116.0
139.2
162.4
185.6
208.8
231
23.1
46.2
69.3
92.4
115.5
138.6
161.7
184.8
207.9
230
23.0
46.0
69.0
920
115.0
138.0
161.0
184.0
207.0
229
22.9
45.8
68.7
91.6
114.5
137.4
160.3
183.2
206.1
228
22.8
45.6
68.4
91.2
114.0
136.8
159.6
182.4
205.2
227
22.7
45.4
68.1
90.8
113.5
136.2
158.9
181.6
204.3
226
22.6
45.2
67.8
90.4
113.0
135.6
158.2
180.8
203.4
144
LOGARITHMS OF NUMBERS.
No. 190 L. 278.]
[No. 214 L.332.
N.
0
1
2
3
4
5
6
7
8
9
Diff.
190
278754
898;;
921 1
9439
9667
9895
m j-i
nae
n^7«
flQflA
2
3
4
281033
3301
5557
7802
1261
3527
5782
8026
1488
3753
6007
8249
1715
3979
6232
8473
1942
4205
6456
8696
2169
4431
6681
8920
2396
4656
6905
9143
2622
4882
7130
9366
2849
5107
7354
9589
3075
5332
7578
9812
227
226
225
223
5
6
7
8
9
290035
2256
4466
6665
8853
0257
2478
4687
6884
9071
0480
2699
4907
7104
9289
0702
2920
5127
7323
9507
0925
3141
5347
7542
9725
1147
3363
5567
7761
9943
1369
3584
5787
7979
1591
3804
6007
8198
1813
4025
6226
8416
2034
4246
6446
8635
222
221
220
219
0161
0-170
ft^QS
no i q
9 t A
200
1
2
3
4
301030
3196
5351
7496
9630
1247
3412
5566
7710
9843
1464
3628
5781
7924
1681
3844
5996
8137
1898
4059
6211
8351
2114
4275
6425
8564
2331
4491
6639
8778
2547
4706
6854
8991
2764
4921
7068
9204
2980
5136
7282
9417
217
216
215
213
0056
0268
048 1
0693
0906
1 1 j o
i -2ar\
1 ^49
919
5
6
7
8
311754
3867
5970
8063
1966
4078
6180
8272
2177
4289
6390
8481
2389
4499
6599
8689
2600
4710
6809
8898
2812
4920
7018
9106
3023
5130
7227
9314
3234
5340
7436
9522
3445
5551
7646
9730
3656
5760
7854
9938
211
210
209
208
9
210
2
3
320146
2219
4282
6336
8380
0354
2426
4488
6541
8583
0562
2633
4694
6745
8787
0769
2839
4899
6950
8991
t)977
3046
5105
7155
9194
1184
3252
5310
7359
9398
1391
3458
5516
7563
9601
1598
3665
5721
7767
9805
1805
3871
5926
7972
2012
4077
6131
8176
207
206
205
204
noftP.
O9 i i
9flT
4
330414
0617
0819
1022
1225
1427
1630
1832
2034
2236
202
PROPORTIONAL PARTS.
Diff.
1
2
3
4
5
6
7
8
9
225
22.5
45.0
67.5
90.0
112.5
135.0
157.5
180.0
202.5
224
22.4
44.8
67.2
89 6
112.0
134.4
156.8
179.2
201.6
223
22.3
44.6
66.9
89.2
111.5
133.8
156.1
178.4
200.7
222
22.2
44.4
66.6
88.8
1110
133.2
155.4
177.6
199.8
221
22.1
44.2
66.3
88.4
110.5
132.6
154.7
176.8
198.9
220
22.0
44.0
66.0
88.0
110.0
132.0
154.0
176.0
198.0
219
21.9
43.8
65.7
87.6
109.5
131.4
153.3
175.2
197.1
218
21.8
43.6
65.4
87.2
109.0
130.8
152.6
174.4
196.2
217
21.7
43.4
65.1
86.8
108.5
130.2
151.9
173.6
195.3
216
21.6
43.2
64.8
86.4
108.0
129.6
151.2
172.8
194.4
215
21.5
43.0
64.5
86.0
107.5
129.0
150.5
172.0
193.5
214
21.4
42.8
64.2
85.6
107.0
128.4
149.8
171.2
192.6
213
21.3
42.6
63.9
85.2
106.5
127.8
149.1
170.4
191.7
212
21.2
42.4
63.6
84.8
106.0
127.2
148.4
169.6
190.8
211
21.1
42.2
63.3
84.4
105.5
126.6
147.7
168.8
189.9
210
21.0
42.0
63.0
84.0
105.0
126.0
147.0
168.0
189.0
209
20.9
41.8
62.7
83.6
104.5
125.4
146.3
167.2
188.1
208
20.8
41.6
62.4
83.2
104.0
124.8
145.6
166.4
187.2
207
20.7
41.4
62.1
82.8
103.5
124.2
144.9
165.6
186.3
206
20.6
41:2
61.8
82.4
103.0
123.6
144.2
164.8
185.4
205
20.5
41.0
61.5
82.0
102.5
123.0
143 5
164.0
184.5
204
20.4
40.8
61.2
81.6
102.0
122.4
142.8
163.2
183.6
203
20.3
40.6
60.9
81.2
101.5
121.8
142.1
162.4
182.7
202
20.2
40.4
60.6
80.8
101.0
121.2 1
141.4
161.6
181.8
LOGARITHMS OF NUMBERS.
145
No. 215 L. 332.]
[No. 239 L. 380.
N.
0
1
3
3
4
5
"3447
5458
7459
9451
6
73649
5658
7659
9650
7
~3850
5859
7858
9849
8
~~4Q5~1
6059
8058
9
"4253
6260
S257
Diff.
~202"
201
200
199
198
197
196
195
194
193
193
192
191
190
189
188
188
187
186
215
6
8
9
220
2
3
4
6
8
9
230
2
3
4
5
6
7
8
9
332438
4454
6460
8456
2640
4655
6660
8656
2842
4856
6860
8855
3044
5057
7060
9054
3246
5257
7260
9253
0047
2028
3999
5962
7915
9860
1796
3724
5643
7554
9456
0246
2225
4195
6157
8110
340444
2423
4392
6353
8305
0642
2620
4589
6549
8500
0841
2817
4785
6744
8694
1039
3014
4981
6939
8889
1237
3212
5178
7135
9083
1435
3409
5374
7330
9278
1632
3606
5570
7525
9472
1830
3802
5766
7720
9666
1603
3532
5452
7363
9266
0054
1989
3916
5834
7744
9646
350248
2183
4108
6026
7935
9835
0442
2375
4301
6217
8125
0636
2568
4493
6408
8316
0829
2761
4685
6599
8506
1023
2954
4876
6790
8696
1216
3147
5068
6981
8886
1410
3339
5260
7172
9076
0025
1917
3800
5675
7542
9401
0215
2105
3988
5862
7729
9587
0404
2294
4176
6049
7915
9772
0593
2482
4363
6236
8101
9958
0783
2671
4551
6423
8287
0972
2859
4739
6610
8473
1161
3048
4926
6796
8659
1350
3236
5113
6983
8845
0698
2544
4382
6212
8034
9849
1539
3424
5301
7169
9030
361728
3612
5488
7356
9216
0143
1991
3831
5664
7488
9306
0328
2175
4015
5846
7670
9487
0513
2360
4198
6029
7852
9668
0883
2728
4565
6394
8216
185
184
184
183
182
181
37106S
2912
4748
6577
8398
38
1253
3096
4932
6759
8580
1437
3280
5115
6942
8761
1622
3464
5298
7124
8943
1806
3647
5481
7306
9124
0030
PROPORTIONAL PARTS.
Diff.
1
3
3
4
5
6
7
8
9
*202~
201
20.2
20.1
40.4
40.2
60.6
60.3
80.8
80.4
101.0
100.5
121.2
120.6
141.4
140.7
161.6
160.8
181.8
180.9
200
20.0
40.0
60.0
80.0
100.0
120.0
140.0
160.0
180.0
199
19.9
39.8
59.7
79.6
99.5
119.4
139.3
159.2
179.{
198
19.8
39.6
59.4
79.2
99.0
118.8
138.6
158.4
178.2
197
19.7
39.4
59.1
78.8
98.5
118.2
137.9
157.6
177.3
196
19.6
39.2
58.8
78.4
98.0
117.6
137.2
156.8
176.4
195
19.5
39.0
58.5
78.0
97.5
117.0
136.5
1 56.0
175.5
194
19.4
38.8
58.2
77.6
97.0
116.4
135.8
155.2
174.6
193
19.3
38.6
57.9
77.2
96.5
115.8
135.1
154.4
173.7
192
19.2
38.4
57.6
76.8
96.0
' 115.2
134.4
153.6
172.8
191
19.1
38.2
57.3
76.4
95.5
114.6
133.7
152.8
171.9
190
190
38.0
57.0
76.0
95.0
114.0
133.0
152.0
171.0
189
18.9
37.8
56.7
75.6
94.5
113.4
132.3
151.2
170.1
188
18.8
37.6
56.4
75.2
940
112.8
131.6
150.4
169.2
187
18.7
37.4
56.1
74.8
93.5
112.2
130.9
149.6
168.3
186
18.6
37.2
55.3
74.4
93.0
111.6
130.2
148.8
167.4
185
18.5
37.0
55.5
74.0
92.5
111.0
129.5
148.0
166.5
184
18.4
36.8
55.2
73.6
92.0
110.4
128.8
147.2
165.6
183
18.3
36.6
54.9
73.2
91.5
109.8
128.1
146.4
164.7
182
18.2
36.4
54.6
72.8
91.0
109.2
127.4
145.6
163.8
181
18.1
36.2
54.3
72.4
90.5
108.6
126.7
144.8
162.9
180
18.0
36.0
54.0
72.0
90.0
108.0
126.0
1440
162.0
179
17.9
35.8
53.7
71.6
89.5
107.4
125.3
143.2
161.1
146
LOGARITHMS OF NUMBERS.
No. 240 L. 380.J
[No. 269 L. 431,
N.
1
3
4
5
6
7
8
9
250
1
2
3
5
6
7
8
9
260
2
3
4
6
8
9
0
1
2
~0573
2377
4174
5964
7746
9520
3
4
5
6
7
8
T656
3456
5249
7034
8811
9
Diff.
IsT
180
179
178
178
177
176
176
175
174
173
173
172
171
17!
170
169
169
168
167
167
166
165
165
164
164
163
162
162
161
380211
2017
3815
5606
7390
9166
0392
2197
3995
5785
7568
9343
0754
2557
4353
6142
7924
9698
0934
2737
4533
6321
8101
9875
1115
2917
4712
6499
8279
1296
3097
4891
6677
8456
1476
3277
5070
6856
8634
1837
3636
5428
7212
8989
0051
1817
3575
5326
7071
8808
0228
1993
3751
5501
7245
8981
0405
2169
3926
5676
7419
9154
0582
2345
4101
5850
7592
9328
0759
2521
4277
6025
7766
9501
390935
2697
4452
6199
7940
9674
1112
2873
4627
6374
8114
9847
1288
3048
4802
6548
8287
1464
3224
4977
6722
8461
1641
3400
5152
6896
8634
0020
1745
3464
'5176
6881
8579
0192
1917
3635
5346
7051
8749
0365
2089
3807
5517
7221
8918
0538
2261
3978
5688
7391
9087
0711
2433
4149
5858
7561
9257
0883
2605
4320
6029
7731
9426
1056
2777
4492
6199
7901
9595
1228
2949
4663
6370
8070
9764
401401
3121
4834
6540
8240
9933
1573
3292
5005
6710
8410
0102
1788
3467
5140
6807
8467
0271
1956
3635
5307
6973
8633
0440
2124
3803
5474
7139
8798
0609
2293
3970
5641
7306
8964
0777
2461
4137
5808
7472
9129
0946
2629
4305
5974
7638
9295
11 14
2796
4472
6141
7804
9460
1110
2754
4392
6023
7648
9268
1283
2964
4639
6308
7970
9625
1451
3132
4806
6474
8135
9791
1439
3082
4718
6349
7973
9591
411620
3300
4973
6641
8301
9956
0121
1768
3410
5045
6674
8297
9914
0286
1933
3574
5208
6836
8459
0451
2097
3737
5371
6999
8621
0616
2261
3901
5534
7161
8783
0781
2426
4065
5697
7324
8944
0945
2590
4228
5860
7486
9106
1275
2918
4555
6186
7811
9429
421604
3246
4882
6511
8135
9752
43
0075
0236
0398
0559
0720
0881
1042
1203
PROPORTIONAL PARTS.
Diff.
T78~
1
2
3
4
5
6
7
8
9
17.8
35.6
53.4
71.2
89.0
106.8
124.6
142.4
160.2
177
17.7
35.4
53.1
70.8
88.5
106.2
• 23.9
141.6
159.3
176
17.6
35.2
52.8
70.4
88.0
105.6
123.2
140.8
158.4
175
17.5
35.0
52.5
70.0
87.5
105.0
122.5
140.0
157.5
174
17.4
34.8
52.2
69.6
87.0
104.4
121.8
139.2
156.6
173
173
34.6
51.9
69.2
86.5
103.8.
121.1
138.4
155.7
172
17.2
34.4
51.6
68.8
86.0
103.2
120.4
137.6
154.8
171
17.1
34.2
51.3
68.4
85.5
102.6
119.7
136.8
153.V
170
17.0
34.0
51.0
68.0
85.0
102.0
119.0
136.0
153.0
169
16.9
33.8
50.7
67.6
84.5
101.4
118.3
135.2
152.1
168
16.8
33.6
50.4
67.2
84.0
100.8
117.6
134.4
151.2
167
16.7
33.4
50.1
66.8
83.5
100.2
116.9
133.6
150.3
166
16.6
33.2
49.8
66.4
830
99.6
116.2
132.8
149.4
165
16.5
33.0
49.5
66.0
82.5
99.0
115.5
132.0
148.5
164
16.4
32.8
49.2
65.6
82.0
98.4
114.8
131.2
147.6
163
16.3
32.6
48.9
65.2
81.5 97.8
114.1
130.4
146.7
162
16.2
32.4
48.5
64.8
81.0 97.2
113.4
129.6
1458
161
16.1
32.2
48.3
64.4
80.5 1 96.6
112.7
128.8
144.9
LOGARITHMS OF NUMBERS. 147
No. 270 L. 431.] [No. 299 L. 476.
N.
?70
1
2
3
4
5
6
8
9
280
2
4
5
6
7
8
9
290
1
3
4
5
6
8
9
0
1
2
3
4
5
6
7
8
9
Diff.
431364
2969
4569
6163
7751
9333
1525
3130
4729
6322
7909
9491
1685
3290
4888
6481
8067
9648
1846
3450
5048
6640
8226
9806
2007
3610
5207
6799
8384
9964
2167
3770
5367
6957
8542
2328
3930
5526
7116
8701
24tte>
4090
5685
7275
8859
2649
4249
5844
7433
9017
2809
4409
6004
7592
9175
161
160
159
159
158
158
157
157
156
155
155
154
154
153
153
152
152
15}
151
150
150
149
149
148
148
147
146
146
146
145
0122
1695
3263
4825
6382
7933
9478
0279
1852
3419
4981
6537
8088
9633
0437
2009
3576
5137
6692
8242
9787
0594
2166
3732
5293
6848
8397
9941
0752
2323
3889
5449
7003
8552
440909
2480
4045
5604
7158
8706
1066
2637
4201
5760
7313
8861
1224
2793
4357
5915
7468
QQ15
1381
2950
4513
6071
7623
9170
1538
3106
4669
6226
7778
9324
0095
1633
3165
4692
6214
7731
9242
450249
1786
3318
4845
6366
7882
9392
0403
1940
3471
4997
6518
8033
9543
0557
2093
3624
5150
6670
8184
9694
0711
2247
3777
5302
6821
8336
9845
0865
2400
3930
5454
6973
8487
9995
1018
2553
4082
5606
7125
8638
1172
2706
4235
5758
7276
8789
1326
2859
4387
5910
7428
8940
1479
3012
4540
6062
7579
9091
0146
1649
3146
4639
6126
7608
9085
0296
1799
3296
4788
6274
7756
9233
0447
1948
3445
4936
6423
7904
9380
0597
2098
3594
5085
6571
8052
9527
0748
2248
3744
5234
6719
8200
•9675
460898
2398
3893
5383
6868
8347
9322
1048
2548
4042
5532
7016
8495
9969
1198
2697
4191
5680
7164
8643
1348
2847
4340
5829
7312
8790
1499
2997
4490
5977
7460
8938
0116
1585
3049
4508
5962
0263
1732
3195
4653
6107
0410
1878
3341
4799
6252
0557
2025
3487
4944
6397
0704
2171
3633
5090
6542
0851
2318
3779
5235
6687
0998
2464
3925
5381
6832
1145
2610
4071
5526
6976
471292
2756
4216
5671
1438
2903
4362
5816
PROPORTIONAL, PARTS.
Diff.
1
2
3
4
5
6
7.
8
9
161
160
16.1
16.0
32.2
32.0
48.3'
48.0
64.4
64.0
80.5
80.0
96.6
96.0
112.7
112.0
128.8
128.0
144.9
144.0
159
15.9
31.8
47.7
63.6
79.5
95.4
111.3
127.2
143.1
158
15.8
31.6
47.4
63.2
79.0
94.8
110.6
126.4
142.2
157
15.7
31.4
47.1
62.8
78.5
94.2
109.9
125.6
141.3
156
15.6
31.2
46.8
62.4
78.0
93.6
109.2
124.8
140.4
155
15.5
31.0
46.5
62.0
77.5
93.0
108 5
124.0
139.5
154
15.4
30.8
46.2
61.6
77.0
92.4
107.8
123.2
138.6
153
15.3
30.6
45.9
61.2
76:5
91.8
107.1
122.4
137.7
152
15.2
30.4
45.6
60.8
76.0
91.2
106.4
121.6
136.8
151
15.1
30.2
45.3
60.4
75.5'
90.6
105.7
120.8
135.9
150
15.0
30.0
450
60.0
75.0
90.0
105.0
120.0
135.0
149
14.9
29.8
44.7
59.6
74.5
89.4
104.3
119.2
134.1
148
14.8
29.6
44.4
59.2
74.0
88.8
103.6
118.4
133.2
147
14.7
29.4
44.1
58.8
73.5
88.2
102.9
117.6
132.3
146
14.6
29.2
43.8
58.4
73.0
87.6
102.2
116.8
131.4
145
14.5
29.0
43.5
58.0
72.5
87.0
101.5
1160
1305
144
14.4
28.8
43.2
57.6
72.0
86.4
100.8
115.2
129.6
143
14.3
28.6
42.9
57.2
71.5
85.8
100.1
114.4
128.7
142
14.2
28.4
42.6
56.8
71.0
85.2
99.4
113.6
127.8
141
14.1
28.2
42.3
56.4
70.5
84.6
98.7
112.8
126.9
140
14.0
28.0
42.0
56.0
70.0
84.0
98.0
112.0 !
126.0
LOGARITHMS OF NUMBERS.
No. 300 L. 477.]
[No. 339 L. 531.
N.
0
1
2
3
4
5
6
7
8
9
Diff.
300
1
477121
8566
7266
8711
7411
8855
7555
8999
7700
9143
7844
9287
7989
9431
8133
9575
8278
9719
8422
9863
1 145'
144
2
3
4
5
6
7
8
480007
1443
2874
4300
5721
7138
8551
0151
1586
3016
4442
5863
7280
8692
0294
1729
3159
4585
6005
7421
8833
0438
1372
3302
4727
6147
7563
8974
0582
2016
3445
4869
6289
7704
91 14
0725
2159
3587
5011
6430
7845
9255
0369
2302
3730
5153
6572
7986
9396
1012
2445
3872
5295
6714
8127
9537
1156
2588
4015
5437
6355
8269
9677
1299
2731
4157
5579
6997
8410
9818
144
143
143
142
142
141
141
9
9958
0099
0239
0380
0520
0661
0801
0941
1081
1222
140
310
1
2
3
4
5
491362
2760
4155
5544
6930
8311
1502
2900
4294
5683
7068
8448
1642
3040
4433
5822
7206
8586
1782
3179
4572
5960
7344
8724
1922
3319
4711
6099
7483
8862
2062
3458
4850
6238
7621
8999
2201
3597
4989
6376
7759
9137
2341
3737
5128
6515
7897
9275
2481
3876
5267
6653
8035
9412
2621
4015
5406
6791
8173
9550
140
139
139
139
138
138
6
9687
9824
9962
0099
0236
0374
0511
0648
0785
0922
137
7
8
9
320
1
2
501059
2427
3791
5150
6505
7856
1 196
2564
3927
5286
6640
7991
1333
2700
4063
5421
6776
8126
1470
2837
4199
5557
6911
8260
1607
2973
4335
5693
7046
8395
1744
3109
4471
5828
7181
8530
1880
3246
4607
5964
7316
8664
2017
3382
4743
6099
7451
8799
2154
3518
4878
6234
7586
8934
2291
3655
5014
6370
7721
9068
137
136
136
136
135
135
3
9203
9337
947 1
9606
9740
9874
0009
0143
0277
041 1
134
4
5
6
7
8
9
330
510545
1883
3218
4548
5874
7196
8514
0679
2017
3351
4681
6006
7328
8646
0813
2151
3484
4813
6139
7460
8777
0947
2284
3617
4946
6271
7592
8909
1081
2418
3750
5079
6403
7724
9040
1215
2551
3883
5211
6535
7855
9171
1349
2684
4016
5344
6668
7987
9303
1482
2818
4149
5476
6800
8119
9434
1616
2951
4282
5609
6932
8251
9566
1750
3084
4415
5741
7064
8382
9697
134
133
133
133
132
132
131
1
9828
9959
0090
0221
0353
0484
0615
0745
0876
1007
131
2
3
4
5
6
7
521138
2444
3746
5045
6339
7630
1269
2575
3876
5174
6469
7759
1400
2705
4006
5304
6598
7888
1530
2835
4136
5434
6727
8016
1661
2966
4266
5563
6856
8145
1792
3096
4396
5693
6985
8274
1922
3226
4526
5822
7114
8402
2053
3356
4656
5951
7243
8531
2183
3486
4785
6081
7372
8660
2314
3616
4915
6210
7501
8788
131
130
130
129
129
129
8
8917
9045
9174
9302
9430
9559
9687
9815
9943
0072
128
9
530200
0328
0456
0584
0712
0840
0968
1096
1223
1351
128
PROPORTIONAL PARTS.
Diff
1
3
3
4
5
6
7
, 8
9
139
13.9
27.8
41.7
55.6
69.5
83.4
97.3
11 1.2
125.1
138
13.8
27.6
41.4
55.2
69.0
82.8
96.6
110.4
124.2
137
13.7
27.4
41.1
54.8
68.5
82.2
95.9
109.6
123.3
136
13.6
27.2
40.8
54.4
68.0
81.6
95.2
108.8
122.4
135
13.5
27.0
40.5
54.0
67.5
81.0
94.5
108.0
121.5
134
13.4
26.8
40.2
53.6
67.0
80.4
93.8
107.2
120.6
133
13.3
26.6
39.9
53.2
66.5
79.8
93.1
106.4
119.7
132
13.2
26.4
39.6
52.8
66.0
79.2
92.4
105.6
118.8
131
13.1
26.2
39.3
52.4
65.5
78.6
91.7
104.8
117.9
130
13.0
26.0
39.0
52.0
65.0
78.0
91.0
1040
117.0
129
12.9
25.8
38.7
51.6
64.5
77.4
90.3
103.2
M6.1
128
12.8
25.6
38.4
51.2
64 0
76.8
89.6
102.4
115.2
127
12.7
25.4 *
38.1
50.8 1
63.5
76.2
88.9 1
101.6
114.3
LOGARITHMS OF NUMBERS.
149
No. 340 L. 531.J '
[No. 379 L. 579.
N.
0
1
3
3
4
5
6
7
8
9
Diff.
340
2
4
5
6
7
8
9
350
1
3
4
5
6
8
9
360
1
2
3
4
5
6
8
9
370
I
2
4
5
6
8
9
531479
2754
4026
5294
6558
7819
9076
1607
2882
4153
5421
6685
7945
9202
1734
3009
4280
5547
6811
8071
9327
1862
3136
4407
5674
6937
8197
9452
1990
3264
4534
5800
7063
8322
9578
2117
3391
4661
5927
7189
8448
9703
2245
3518
4787
6053
7315
8574
9829
2372
3645
4914
6180
7441
8699
9954
2500
3772
5041
6306
7567
8825
2627
3899
5167
6432
7693
8951
128
127
127
126
126
126
125
125
125
124
124
124
123
123
123
122
122
121
121
121
120
120
120
119
119
119
m
118
118
118
117
117
117
116
116
116
115
115
115
114
0079
1330
2576
3820
5060
6296
7529
8758
9984
0204
1454
2701
3944
5183
6419
7652
8881
540329
1579
2825
4068
5307
6543
7775
9003
0455
1704
2950
4192
5431
6666
7898
9126
0580
1829
3074
4316
5555
6', 89
8021
9249
0705
1953
3199
4440
5678
6913
8144
9371
0830
2078
3323
4564
5802
7036
8267
9494
0955
2203
3447
4688
5925
7159
8389
9616
1080
2327
3571
4812
6049
7282
8512
9739
1205
2452
3696
4936
6172
7405
8635
9861
0106
1328
2547
3762
4973
6«82
7387
8589
9787
550228
1450
2668
3883
5094
6303
7507
8709
9907
0351
1572
2790
4004
5215
6423
7627
8829
0473
1694
2911
4126
5336
6544
7748
8948
0595
1816
3033
4247
5457
6664
7868
9068
0717
1938
3155
4368
5578
6785
7988
9188
0840
2060
3276
4489
5699
6905
8108
9308
0962
2181
3398
4610
5820
7026
8228
9428
1084
2303
3519
4731
5940
7146
8349
9548
1206
2425
3640
4852
6061
7267
8469
9667
0026
1221
2412
3600
4784
5966
7144
8319
9491
0146
1340
2531
3718
4903
6084
7262
8436
9608
0265
1459
2650
3837
5021
6202
7379
8554
9725
0385
1578
2769
3955
5139
6320
7497
8671
9842
0504
1698
2887
4074
5257
6437
7614
8788
9959
0624
1817
3006
4192
5376
6555
7732
8905
0743
1936
3125
4311
5494
6673
7849
9023
0863
2055
3244
4429
5612
6791
7967
9140
0982
2174
3362
4548
5730
6909
8084
9257
561101
2293
3481
4666
5848
7026
8202
9374
0076
1243
2407
3568
4726
5880
7032
8181
9326
0193
1359
2523
3684
4841
5996
7147
8295
9441
0309
1476
2639
3800
4957
6111
7262
8410
9555
0426
1592
2755
3915
5072
6226
73,77
8525
9669
570543
1709
2872
4031
5188
6341
7492
8639
0660
1825
2988
4147
5303
6457
7607
8754
0776
1942
3104
4263
5419
6572
7722
8868
0893
2058
3220
4379
5534
6687
7836
8983
1010
2174
3336
4494
5650
6802
7951
9097
1126
2291
3452
4610
5765
6917
8066
9212
PROPORTIONAL PARTS.
Diff.
1
3
3
4
5
6
7
8
9
128
12.8
25.6
38.4
51.2
64.0
76.8
89.6
102.4
115.2
127
12.7
25.4
38.1
50.8
63.5
76.2
88:9
101.6
114.3
126
12.6
25.2
37.8
50.4
63.0
75.6
88.2
100.8
113.4
125
12.5
25.0
37.5
50.0
62.5
75.0
87.5
100.0
112.5
124
12.4
24.8
37.2
49.6
62.0
74.4
86.8
99.2
111.6
123
12.3
24.6
36.9
49.2
61.5
73.8
86.1
98.4
110.7
122
12.2
24.4
36.6
48.8
61.0
73.2
85.4
97.6
109.8
121
12.1
24.2
36.3
48.4
60.5
72.6
84.7
96.8
108.9
120
12.0
24.0
36.0
48.0
60.0
72.0
84.0
96.0
108.0
119
11.9
23.8
35.7
47.6
59.5
71.4
83.3
95.2
107.1
150
LOGARITHMS OF NUMBERS.
No. 380 L. 579.J
[No. 414 L. 617.
N.
0
1
2
3
4
5
6
7
8
9
Diff.
114
113
112
111
110
109
108
107
106
105
380
1
2
4
6
7
8
9
390
1
2
3
4
5
6
7
8
9
400
1
2
3
4
5
6
7
8
9
410
2
4
579784
9898
0012
1153
2291
3426
4557
5686
6812
7935
9056
0126
1267
2404
3539
4670
5799
6925
8047
9167
0241
1381
2518
3652
4783
5912
7037
8160
9279
0355
1495
2631
3765
4896
6024
7149
8272
9391
0469
1608
2745
3879
5009
6137
7262
8384
9503
0583
1722
2858
3992
5122
6250
7374
8496
9615
0697
1836
2972
4105
5235
6362
7486
8608
9726
0811
1950
3085
4218
5348
6475
7599
8720
9838
580925
2063
3199
4331
5461
6587
7711
8832
9950
1039
2177
3312
4444
5574
6700
7823
8944
0061
1176
2288
3397
4503
5606
6707
7805
8900
9992
~\OS2
2169
3253
4334
5413
6489
7562
8633
9701
0173
1287
2399
3508
4614
5717
6817
7914
9009
0284
1399
2510
3618
4724
5827
6927
8024
9119
0396
1510
2621
3729
4834
5937
7037
8134
9228
0507
1621
2732
3840
4945
6047
7146
8243
9337
0619
1732
2843
3950
5055
6157
7256
8353
9446
0730
1843
2954
4061
5165
6267
7366
8462
9556
0842
1955
3064
4171
5276
6377
7476
8572
9665
0953
2066
3175
4282
5386
6487
7586
8681
9774
591065
2177
3286
4393
5496
6597
7695
8791
9883
0101
1191
2277
3361
4442
5521
6596
7669
8740
9808
0210
1299
2386
3469
4550
5628
6704
7777
8847
9914
0319
1406
2494
3577
4658
5736
681 1
7884
8954
0428
1517
2603
3686
4766
5844
6919
7991
9061
0537
1625
2711
3794
4874
5951
7026
8098
9167
0646
1734
2819
3902
4982
6059
7133
8205
9274
0755
1843
2928
4010
5089
6166
7241
8312
9381
0864
1951
3036
4118
5197
6274
7348
8419
9488
600973
2060
3144
4226
5305
6381
7455
8526
9594
0021
1086
2148
3207
4264
5319
6370
7420
0128
1192
2254
3313
4370
5424
6476
7525
0234
1298
2360
3419
4475
5529
6581
7629
0341
1405
2466
3525
4581
5634
6686
7734
0447
1511
2572
3630
4686
5740
6790
7839
0554
1617
2678
3736
4792
5845
6895
7943
610660
1723
2784
3842
4897
5950
7000
0767
1829
2890
3947
5003
6055
7105
0873
1936
2996
4053
5108
6160
7210
0979
2042
3102
4159
5213
6265
7315
PROPORTIONAL PARTS.
Diff.
1
2
3
4
5
6
7
8
9
118
11.8
23.6
35.4
47.2
59.0
70.8
82.6
94.4
106.2
117
11.7
23.4
35.1
46.8
58.5
70.2
81.9
93.6
105.3
116
11.6
23.2
34.8
46.4
58.0
69.6
81.2
92.8
104.4
115
11.5
23.0
34.5
46.0
57.5
69.0
80.5
92.0
103.5
114
11.4
22.8
34.2
45.6
57.0
68.4
79.8
9, 7
102.6
113
11.3
22.6
33.9
45.2
56.5
67.8
79.1
90.4
101.7
112
11.2
22.4
33.6
44.8
56.0
67.2
78.4
89.6
100.8
111
11.1
22.2
33.3
44.4
55.5
66.6
77.7
88.8
99.9
110
11.0
22.0
33.0
44.0
55.0
66.0
77.0
88.0
99.0
109
10.9
21.8
32.7
43.6
54.5
65.4
76.3
87.2
98.1
108
10.8
21.6
32.4
43.2
54.0
64.8
75.6
86.4
97.2
107
10.7
21.4
32.1
42.8
53.5
64.2
74.9
85.6
96.3
106
10.6
21.2
31.8
42.4
53.0
63.6
74.2
84.8
95.4
105
10.5
21.0
31.5
42.0
52.5
63.0
73.5
84.0
94.5
104
10.4
20.8
31.2
41.6
52.0
62.4
72.8
83.2
93.6
LOGARITHMS OF NUMBERS.
151
No. 415 L. 618.]
[No. 459 L. 662.
N.
0
1
2
3
4
5
6
7
8
9
Diff.
415
618048
8153
8257
8362
8466
8571
8676
8780
8884
8989
~105
6
9093
9198
9302
9406
9511
9615
9719
9824
9928
"0032
7
620136
0240
0344
0448
0552
0656
0760
0864
0968
1072
104
8
1176
1280
1384
1488
1592
1695
1799
1903
2007
2110
9
2214
2318
2421
2525
2628
2732
2835
2939
3042
3146
420
3249
3353
3456
3559
3663
3766
3869
3973
4076
4179
1
4282
4385
4488
4591
4695
4793
4901
5004
5107
5210
103
2
5312
5415
5518
5621
5724
5827
5929
6032
6135
6238
3
6340
6443
6546
6648
6751
6853
6956
7058
7161
7263
4
7366
7463
7571
7673
7775
7878
7980
8082
8185
8287
5
8389
8491
8593
8695
8797
8900
9002
9104
9206
9308
.102
6
9410
9512
9613
9715
9817
9919
0021
0123
0224
0326
7
630428
0530
~063T
0733
0835
0936
1038
1139
1241
1342
8
1444
1545
1647
1748
1849
1951
2052
2153
2255
2356
9
2457
2559
2660
2761
2862
2963
3064
3165
3266
3367
430
3468
3569
3670
3771
3872
3973
4074
4175
4276
4376
101
1
4477
4578
4679
4779
4880
4981
5081
5182
5283
5383
2
5484
5584
5635
5785
5886
5986
6087
6187
6287
6388
3
6488
6588
6638
6789
6889
6989
7089
7189
7290
7390
4
7490
7590
7690
7790
7890
7990
8090
8190
8290
8389
100
5
8489
8589
8689
8789
8888
8988
9088
9188
9287
9387
6
9486
9586
9686
9785
9885
9984
0084
0183
0283
0382
7
640431
0581
0680
0779
0879
0978
1077
1177
1276
1375
8
1474
1573
1672
1771
1871
1970
2069
2168
2267
2366
9
2465
2563
2662
2761
2860
2959
3058
3156
3255
3354
99
440
3453
3551
3650
3749
3847
3946
4044
4143
4242
4340
1
4439
4537
4636
4734
4832
4931
5029
5127
5226
5324
2
5422
5521
5619
5717
5815
5913
6011
6110
6208
6306
3
6404
6502
6600
6698
6796
6894
6992
7089
7187
7285
98
4
7333
7481
7579
7676
7774
7872
7969
8067
8165
8262
5
8360
8458
8555
8653
8750
8848
8945
9043
9140
9237
6
9335
9432
9530
9627
9724
9821
9919
0016
0113
0210
7
650303
0405
0502
"0599
0696
0793
0890
0987
1084
1181
8
1278
1375
1472
1569
1666
1762
1859
1956
2053
2150
97
9
2246
2343
2440
2536
2633
2730
2826
2923
3019
3116
450
3213
3309
3405
3502
3598
3695
3791
3888
3984
4080
4177
4273
4369
4465
4562
4658
4754
4850
4946
5042
2
5138
5235
5331
5427
5523
5619
5715
5810
5906
6002
96
3
6098
6194
6290
6386
6482
6577
6673
6769
6864
6960
4
7056
7152
7247
7343
7438
7534
7629
7725
7820
7916
5
8011
8107
8202
8298
8393
8488
8584
8679
8774
8870
6
8965
9060
9155
9250
9346
9441
9536
9631
9726
9821
7
9916
0011
0106
0201
0296
0391
0486
0581
0676
"0771
95
8
660865
0960
1055
1150
1245
1339
1434
1529
1623
1718
9
1813
1907
2002
2096
2191
2286
23801 2475
2569
2663
PROPORTIONAL PARTS.
Diff.
1
10.5
10.4
10.3
10.2
10.1
10.0
9.9
2
3
4
5
6
7
8
9
105
104
103
102
101
100
99
21.0
20.8
20.6
20.4
20.2
20.0
19.8
31.5
31.2
30.9
30.6
30.3
30.0
29.7
42.0
41.6
41.2
40.8
40.4
40.0
39.6
52.5
52.0
51.5
51.0
50.5
50.0
49.5
63.0
62.4
61.8
61.2
60.6
60.0
59.4
73.5
72.8
72.1
71.4
70.7
70.0
69.3
84.0
83.2
82.4
81.6
80.8
80.0
79.2
94.5
93.6
92.7
91.8
90.9
90.0
89.1
152
LOGARITHMS OF NUMBERS.
No. 460 L. 662.]
[No. 499 L. 698
N.
0
1
2
3
4
5
6
7
8
9
Diff<
"46CT
' 662758
2852
2947
3041
3135
3230
"3324
3418
3512
3607
3701
3795
3889
3983
4078
4172
4266
4360
4454
4548
2
4642
4736
4830
4924
5018
5112
5206
5299
5393
5487
94
3
5581
5675
5769
5862
5956
6050
6143
6237
6331
6424
4
•6518
6612
6705
6799
6892
6986
7079
7173
7266
7360
5
7453
7546
7640
7733
7826
7920
8013
8106
8199
8293
6
8386
8479
8572
8665
8759
8852
8945
9038
9131
9224
7
9317
94 1C
9503
9596
9689
9782
9875
9967
0060
fil 53
Ql
8
670246
0339
0431
0524
0617
0710
0802
0895
0988
U 1 Jj
1080
7J
9
1173
1265
1358
1451
1543
1636
1728
1821
1913
2005
470
2098
2190
2283
2375
2467
2560
2652
2744
2836
2929
1
3021
3rl13
3205
3297
3390
3482
3574
3666
3758
3850
2
3942
4934
4126
4218
4310
4402
4494
4586
4677
4769
92
3
4861
4953
5045
5137
5228
5320
5412
5503
5595
5687
4
5778
5870
5962
6053
6145
6236
6328
6419
6511
6602
5
6694
6785
6876
6968
7059
7151
7242
7333
7424
7516
6
7607
7698
7789
7881
7972
8063
8154
8245
8336
8427
7
8518
8609
8700
8791
8882
8973
9064
9155
9246
9337
9!
3
9428
9519
9610
9700
9791
9882
9973
0063
01 54
0745
9
680336
0426
0517
0607
0698
0789
0879
0970
1060
\)mj
1151
480
1241
1332
1422
1513
1603
1693
1784
1874
1964
2055
1
2145
2235
2326
2416
2506
2596
2686
2777
2867
2957
2
3047
3137
3227
3317
3407
3497
3587
3677
3767
3857
90
3
3947
4037
4127
4217
4307
4396
4486
4576
4666
4756
4
4845
4935
5025
5114
5204
5294
5383
5473
5563
5652
5
5742
5831
5921
601-0
6100
6189
6279
6368
6458
6547
6
6636
6726
6815
6904
6994
7083
7172
7261
7351
7440
7
7529
7618
7707
77%
7886
7975
8064
8153
8242
8331
8
8420
8509
8598
8687
8776
8865
8953
9042
9131
9220
89
9
9309
9398
9486
9575
9664
9753
9841
9930
0019
01(17
490
690196
0285
0373
0462
0550
0639
0728
0816
0905
U 1 U/
0993
1
1081
1170
1258
1347
1435
1524
1612
1700
1789
1877
2
1965
2053
2142
2230
2318
2406
2494
2583
2671
2759
3
2847
2935
3023
3111
3199
3287
3375
3463
3551
3639
88
4
3727
3815
3903
3991
4078
4166
4254
4342
4430
4517
5
4605
4693
4781
4868
4956
5044
5131
5219
5307
5394
6
5482
5569
5657
5744
5832
5919
6007
6094
6182
6269
7
6356
6444
6531
6618
6706
6793
6880
6968
7055
7142
8
7229
7317
7404
7491
7578
7665
7752
7839
7926
8014
87
9
8100
8188
8275
8362
8449
8535
8622
8709
8796
8883
PROPORTIONAL PARTS.
Diff.
1
3
3
4
5
6
7
8
9
^98
9.8
19.6
29 A
39.2
49.0
58.8
68.6
78.4
88.2
97
9.7
19.4
29.1
38.8
48.5
58.2
67.9
77.6
87.3
96
9.6
19.2
28.8
38.4
48.0
57.6
67.2
76.8
86.4
95
9.5
19.0
28.5
38.0
47.5
57.0
66.5
76.0
85.5
94
9.4
18.8
28.2
37.6
47.0
56.4
65.8
75.2
84.6
93
9.3
18.6
27.9
37.2
46.5
55.8
65.1
74.4
83.7
92
9.2
18.4
27.6
36.8
46.0
55.2
64.4
73.6
82.8
91
9.1
18.2
27.3
36.4
45.5
54.6
63.7
72.8
81.9
90
9.0
18.0
27.0
36.0
45.0
54.0
63.0
72.0
81.0
89
8.9
17.8
26.7
35.6
44.5
53.4
62.3
71.2
80.1
88
8.8
17.6
26.4
35.2
44.0
52.8
61.6
70.4
79.2
87
8.7
17.4
26.1
34.8
43.5
52.2
60.9
69.6
78.3
66
8.6
17.2
25.8
34.4
43.0
51.6
60.2
68.8
77.4
LOGARITHMS OF NUMBERS.
153
No. 500 L. 698.1
[No. 544 L. 736
N.
0
1
3
3
4
5
6
7
8
9
DiS.
500
698970
QO-1Q
9057
QQ9.4
9144
9231
9317
9404
9491
"9578
~9664
9751
t
yoJO
yy^^t
001 1
0098
0184
0271
0358
0444
0531
0617
2
700704
0790
0877
0963
1050
1136
1222
1309
1395
1482
3
1568
1654
1741
1827
1913
1999
2086
2172
2258
2344
4
243 1
2517
2603
2689
2775
2861
2947
3033
3119
3205
5
3291
3377
3463
3549
3635
3721
3807
3893
3979
4065
86
6
4151
4236
4322
4408
4494
4579
4665
4751
4837
4922
7
5008
5094
5179
5265
5350
5436
5522
5607
5693
5778
8
5864
5949
6035
6120
6206
6291
6376
6462
6547
6632
9
6718
6803
6888
6974
7059
7144
7229
7315
7400
7485
510
7570
7655
7740
7826
7911
7996
8081
8166
8251
8336
1
8421
8506
8591
8676
8761
8846
8931
9015
9100
9185
85
O?7fl
Q-l CC
Q44O
QCTX
9609
9694
9779
9863
9948
y^/U
\TJ JJ
y^fnU
• y.?<6if
0033
3
710117
0202
0287
0371
0456
0540
0625
0710
0794
0879
4
0963
1048
1132
1217
1301
1385
1470
1554
1639
1723
5
1807
1892
1976
2060
2144
2229
2313
2397
2481
2566
6
2650
2734
2818
2902
2986
3070
3154
3238
3323
3407
7
3491
3575
3659
3742
3826
3910
3994
4078
4162
4246
84
8
4330
4414
4497
4581
4665
4749
4833
4916
5000
5084
9
5167
5251
5335
5418
5502
5586
5669
5753
5836
5920
520
6003
6087
6170
6*254
6337
6421
6504
6588
6671
6754
6838
6921
7004
7088
7171
7254
7338
7421
7504
7587
2
7671
7754
7837
7920
8003
8086
8169
8253
8336
8419
83
3
8502
8585
8668
875T
8834
8917
9000
9083
9165
9248
Qa-i |
QA1 /
Q AQ7
QCOA
Qf\f\^
Q7 AC*
QQOQ
991 1
9994
yjJ 1
y^f 1 f
y^ty/
VDOL
yOO.7
y/T-j
yo^o
0077
5
720159
0242
0325
0407
0490
0573
0655
0738
0821
0903
6
0986
1068
1151
1233
1316
1398
1481
1563
1646
1728
7
1811
1893
1975
2058
2140
2222
2305
2387
2469
2552
8
2634
2716
2798
2881
2963
3045
3UZ7
3209
3291
3374
9
3456
3538
3620
3702
3784
3866
3948
4030
4112
4194
82
530
4276
4358
4440
4522
4604
4685
4767
4849
4931
5013
1
5095
5176
5258
5340
5422
5503
5585
5667
5748
5830
5912
5993
6075
6156
6238
6320
6401
6483
6564
6646
3
6727
6809
6890
6972
7053
7134
7216
7297
7379
7460
7541
7623
7704
7785
7866
7948
8029
8110
8191
8273
5
8354
8435
8516
8597
8678
8759
8841
8922
9003
9084
6
7
9165
9974
9246
9327
9408
9489
9570
9651
9732
9813
9893
81
005
0136
021 7
029?
0376
045C
0540
0621
0702
8
730782
0863
094^
1024
1105
1186
1266
1347
1428
1508
9
1589
1669
1750
1830
1911
1991
2072
2152
2233
2313
540
2394
2474
2555
2635
2715
2796
2876
2956
3037
3117
3197
3278
3358
3438
3518
3598
3679
3759
3839
3919
2
3999
4079
4160
4240
4320
4400
4480
4560
4640
4720
80
3
4800
4880
4960
5040
5120
5200
5279
5359
5439
5519
4
5599
5679
5759
5838
5918
5998
6078
6157
6237
6317
PROPORTIONAL PARTS.
DIS.
1
2
3
4
5
6
7
8
9
87
86
85
84
8.7
8.6
8.5
8.4
17.4
17.2
17.0
16.8
26.1
25.8
25.5
25.2
34.8
34.4
34.0
33.6
43.5
43.0
42.5
42.0
52.2
51.6
51.0
50.4
60.9
60.2
59.5
58.8
69.6
68.8
68.0
67.2
78.3
77.4
76.5
75.6
154
LOGARITHMS OF NUMBERS.
No. 545 L. 736.]
[No 584 L. 767
N.
0
1
2
3
4
5
6
7
8
9 •
Diff.
$45
6
8
9
736397
7193
7987
8781
9572
6476
7272
8067
8860
9651
6556
7352
8146
8939
9731
6635
7431
8225
9018
9810
6715
7511
8305
9097
9889
6795
7590
8384
9177
9968
6874
7670
8463
9256
6954
7749
8543
9335
7034
7829
8622
9414
7113
7908
8701
9493
0047
0126
07OS
nooj
7O
550
740363
0442
0521
0600
0678
0757
Uvn/
0836
0915
U<iUJ
0994
v^OH
1073
/y
1152
1230
1309
1388
1467
1546
1624
1703
1782
1860
2
1939
2018
2096
2175
2254
2332
2411
2489
2568
2647
3
2725
2804
2882
2961
3039
3118
3196
3275
3353
3431
4
3510
3588
3667
3745
3823
3902
3980
4058
4136
4215
5
4293
4371
4449
4528
4606
4684
4762
4840
4919
4997
6
5075
5153
5231
5309
5387
5465
5543
5621
5699
5777
78
7
5855
5933
6011
6089
6167
6245
6323
6401
6479
6556
8
6634
6712
6790
6868
6945
7023
7101
7179
7256
7334
9
7412
7489
7567
7645
7722
7800
7878
7955
8033
8110
560
8188
8266
8343
8421
8498
8576
8653
8731
8808
8885
8963
9040
9118
9195
9272
9350
9427
9504
9582
9659
2
9736
9814
9891
9968
0045
0123
0200
0277
0354
0431
3
750508
0586
0663
0740
0817
0894
0971
1048
1125
1202
4
1279
1356
1433
1510
1587
1664
. 1741
1818
1895
1972
77
5
2048
2125
2202
2279
2356
2433
2509
2586
2663
2740
6
2816
2893
2970
3047
3123
3200
3277
3353
3430
3506
7
3583
3660
3736
3813
3889
3966
4042
4119
4195
4272
8
4348
4425
4501
4578
4654
4730
4807
4883
4960
5036
9
5112
5189
5265
5341
5417
5494
5570
5646
5722
5799
570
5875
5951
6027
6103
6180
6256
6332
6408
6484
6560
1
6636
6712
6758
6864
6940
7016
7092
7168
7244
7320
76
2
7396
7472
7548
7624
7700
7775
7851
7927
8003
8079
3
8155
8230
8306
8382
8458
8533
8609
8685
8761
8836
4
8912
8988
9063
9139
9214
9290
9366
9441
9517
9592
i
QAA«
074-1
9819
9894
QQ7O
9
7ODO
7/*1J
77/\J
0045
0121
0196
0272
0347
6
760422
0498
0573
0649
0724
0799
0875
0950
1025
1101
7
1176
1251
1326
1402
1477
1552
1627
1702
1778
1853
8
1928
2003
2078
2153
2228
2303
2378
2453
2529
2604
73
9
2679
2754
2829
2904
2978
3053
3128
3203
3278
3353
580
3428
3503
3578
3653
3727
3802
3877
3952
4027
4101
1
4176
4251
4326
4400
4475
4550
4624
4699
4774
4848
2
4923
4998
5072
5147
5221
5296
5370
5445
5520
5594
3
5669
5743
5818
5892
5966
6041
6115
6190
6264
6338
4
6413
6487
6562
6636
6710
6785
6859
6933
7007
7082
PROPORTIONAL, PARTS.
Diff.
1ST-
1
3
~T6T
3
4
5
6
7
8
9
8.3
24.9
33.2
41.5
49.8
58.1
66.4
74.7"
82
8.2
16.4
24.6
32.8
41.0
49.2
57.4
65.6
73.8
81
8.1
16.2
24.3
32.4
40.5
48.6
56.7
64.8
72.9
80
8.0
16.0
24.0
32.0
40.0
48.0
56.0
64.0
72.0
79
7.9
15.8
23.7
31.6
39.5
47.4
55.3
63.2
71.1
78
7.8
15.6
23.4
31.2
39.0
46.8
54.6
62.4
70.2
77
7.7
15.4
23.1
30.8
38.5
46.2
53.9
61.6
69.3
76
7.6
15.2
22.8
30.4
38.0
45.6
53.2
60.8
68.4
75
7.5
15.0
22.5
30.0
37.5
45.0
52.5
60.0
67.5
74
7.4
14,8
22,2
29.6
37.0
44.4
51.8
59.3
66*
LOGARITHMS OF NUMBERS.
155
No. 585 L. 767.]
[No. 629 L. 79ft
N.
0
1
3
3
4
5
6
7
8
9
Diff.
585
767156
7230
~730~4
7379
7453
7527
7601
7675
7749
7823
6
7898
7972
8046
8120
8194
8268
8342
8416
8490
8564
74
7
8638
8712
8786
8860
8934
9008
9082
9156
9230
9303
9377
945 1
9525
9599
9673
9746
9820
9894
9968
0042
9
770115
0189
0263
0336
0410
0484
0557
0631
0705
0778
590
0852
0926
0999
1073
1146
1220
1293
1367
1440
1514
1
1587
1661
1734
1808
1881
1955
2028
2102
2175
2248
2
2322
2395
2468
2542
2615
2688
2762
2835
2908
2981
3
3055
3128
3201
3274
3348
3421
3494
3567
3640
3713
4
3786
3860
3933
4006
4079
4152
4225
4298
4371
4444
73
5
4517
4590
4663
4736
4809
4882
4955
5028
5100
5173
6
5246
5319
5392
5465
5538
5610
5683
5756
5829
5902
7
5974
6047
6120
6193
6265
6338
6411
6483
6556
6629
8
6701
6774
6846
6919
6992
7064
7137
7209
7282
7354
9
7427
7499
7572
7644
7717
7789
7862
7934
8006
8079
600
8151
8224
8296
8368
8441
8513
8585
8658
8730
8802
1
8874
8947
9019
9091
9163
9236
9308
9380
9452
9524
9596
9669
9741
9813
9885
9957
0029
0101
0173
0245
3
780317
0389
0461
0533
0605
0677
0749
0821
0893
0965
72
4
1037
1109
1181
1253
1324
1396
1468
1540
1612
1684
5
1755
1827
1899
1971
2042
2114
2186
2258
2329
2401
6
2473
2544
2616
268 T
2759
2831
2902
2974
3046
3117
7
3189
3260
3332
3403
3475
3546
3618
3689
3761
3832
8
3904
3975
4046
4118
4189
4261
4332
4403
4475
4546
9
4617
4689
4760
4831
4902
4974
5045
5116
5187
5259
610
5330
5401
5472
5543
5615
5686
5757
5828
5899
5970
6041
6112
6183
6254
6325
6396
6467
6538
6609
6680
71
2
6751
6822
6893
6964
7035
7106
7177
7248
7319
7390
7460
7531
7602
7673
7744
7815
7885
7956
8027
8098
4
8168
8239
8310
8381
8451
8522
8593
8663
8734
8804
5
8875
8946
9016
9087
9157
9228
9299
9369
9440
9510
9581
965 1
9722
9792
986-
9933
0004
0074
0144
0215
7
790285
0356
0426
0496
0567
0637
0707
0778
0848
0918
8
0988
1059
1129
1199
1269
1340
1410
1480
1550
1620
9
1691
1761
1831
1901
1971
2041
2111
2181
2252
2322
620
2392
2462
2532
2602
2672
2742
2812
2882
2952
3022
70
1
3092
3162
3231
3301
3371
3441
3511
3581
3651
3721
2
3790
3860
3930
4000
4070
4139
4209
4279
4349
4418
4488
4558
4627
4697
4767
4836
4906
4976
5045
5115
4
5185
5254
5324
5393
5463
5532
5602
5672
5741
5811
5
5880
5949
6019
6088
6158
6227
6297
6366
6436
6505
6
6574
6644
6713
6782
6852
6921
6990
7060
7129
7198
7
7268
7337
7406
7475
7545
7614
7683
7752
7821
7890
8
7960
8029
8098
8167
8236
8305
8374
8443
8513
8582
9
8651
8720
8789
8858
8927
8996
9065
9134 9203
9272
69
PROPORTIONAL PARTS.
Diff.
74
73
72
71
70
69
1
2
3
4
5
6
7
8
9
7.5
7.4
7.3
7.2
7.1
7.0
6.9
15.0
14.8
14.6
14.4
14.2
14.0
13.8
22.5
22.2
21.9
21.6
21.3
21.0
20.7
30.0
29.6
29.2
28.8
28.4
28.0
27.6
37.5
37.0
36.5
36.0
35.5
35.0
34.5
45.0
44.4
43.8
43.2
42.6
42.0
41.4
52.5
51.8
51.1
50.4
49.7
49.0
48.3 .
60.0
59.2
58.4
57.6
56.8
56.0
55.2
67.5
66.6
65.7
64.8
63.9
63.0
62.1
156
LOGAK1THMS OF NUMBERS.
No. 630 L. 799.1
lNo.674L.829,
N.
0
1
2
3
4
5
6
7
8
9
Diff.
"630
799341
9409
9478
9547
9616
9685
9754
9823
9892
9961
1
800029
0098
0167
0236
0305
0373
0442
0511
0580
0648
2
0717
0786
0854
0923
0992
1061
1129
1198
1266
1335
3
1404
1472
1541
1609
1678
1747
1815
1884
1952
2021
4
2089
2158
2226
2295
2363
2432
2500
2568
2637
2705
5
2774
2842
2910
2979
3047
3116
3184
3252
3321
3389
6
3457
3525
3594
3662
3730
3798
3867
3935
4003
4071
7
4139
4208
4276
4344
4412
4480
4548
4616
4685
4753
8
4821
4889
4957
5025
5093
5161
5229
5297
5365
5433
68
9
5501
5569
5637
5705
5773
5841
5908
5976
6044
6112
640
806180
6248
6316
6384
6451
6519
6587
6655
6723
6790
1
6858
6926
6994
7061
7129
7197
7264
7332
7400
7467
2
7535
7603
7670
7738
7806
7873
7941
8008
8076
8143
3
8211
8279
8346
8414
8481
8549
8616
8684
8751
8818
4
8886
8953
9021
9088
9156
9223
9290
9358
9425
9492
5
9560
9627
9694
9762
9829
9896
9964
0031
0098
0165
6
810233
0300
0367
0434
0501
0569
0636
0703
0770
0837
7
0904
0971
1039
1106
1173
1240
1307
1374
1441
1508
6:
8
1575
1642
•1709
1776
1843
1910
1977
2044
2111
2178
9
2245
2312
2379
2445
2512
2579
2646
2713
2780
2847
650
2913
2980
3047
3114
3181
3247
3314
3381
3448
3514
1
3581
3648
3714
3781
3848
3914
3981
4048
4114
4181
2
4248
4314
4381
4447
4514
4581
4647
4714
4780
4847
3
4913
4980
5046
5113
5179
5246
5312
5378
5445
5511
4
5578
5644
5711
5777
5843
5910
5976
6042
6109
6175
5
6241
6308
6374
6440
6506
6573
6639
6705
6771
6838
6
6904
6970
7036
7102
7169
7235
7301
7367
7433
7499
7
7565
7631
7698
7764
7830
7896
7962
8028
8094
8160
8
8226
8292
8358
8424
8490
8556
8622
8688
8754
8820
66
9
8885
8951
9017
9083
9149
9215
9281
9346
9412
9478
660
9544
9610
9676
9741
9807
9873
9939
0004
0070
0136
1
820201
0267
0333
0399
0464
0530
0595
0661
0727
0792
2
0858
0924
0989
1055
1120
1186
1251
1317
1382
1448
3
1514
-1579
1645
1710
1775
1841
1906
1972
2037
2103
4
2168
2233
2299
2364
2430
2495
2560
2626
2691
2756
5
2822
2887
2952
3018
3083
3148
3213
3279
3344
3409
6
3474
3539
3605
3670
3735
3800
3865
3930
3996
4061
7
4126
4191
4256
4321
4386
4451
4516
4581
4646
4711
8
4776
4841
4906
4971
5036
5101
5166
5231
5296
5361
65
9
5426
5491
5556
5621
5686
5751
5815
5880
5945
6010
670
6075
6140
6204
6269
6334
6399
6464
6528
6593
6658
1
6723
6787
6852
6917
6981
7046
7111
7175
7240
7305
2
7369
7434
7499
7563
7628
7692
7757
7821
7886
7951
3
8015
8080
8144
8209
8273
8338
8402
8467
8531
8595
4
8660
8724
8789
8853
8918
8982' 9046
9111
9175
9239
PROPORTIONAL PARTS.
Diff.
1
2
3
4
5
G
7
8
9
68
67
66
65
64
6.8
6.7
6.6
6.5
6.4
13.6
13.4
13.2
13.0
12.8
20.4
20.1
19.8
19.5
19.2
27.2
26.8
26.4
26.0
25.6
34.0
33.5
33.0
32.5
32.0
40.8
40.2
39.6
39.0
38.4
47.6
46.9
46.2
45.5
44.8
54.4
53.6
52.8
52.0
51.2
61.2
60.3
59.4
58.5
57.6
LOGARITHMS Ofr NtJMSERS.
15?
No. 675 L. 829.]
[No. 719 L. 857.
N.
0
1
2
3
4
5
6
7
8
9
Diff.
~67T
829304
9947
9368
9432
9497
9561
9625
9690
9754
9818
9882
6
001 1
0075
0139
0204
0268
0332
0396
0460
"TTT
7
830589
0653
0717
0781
0845
0909
0973
1037
1102
1166
3
1230
1294
. 1358
1422
1486
1550
1614
1678
1742
1806
64
9
1870
1934
1998
2062
2126
2189
2253
2317
2381
2445
680
2509
2573
2637
2700
2764
2828
2892
2956
3020
3083
1
3147
3211
3275
3338
3402
3466
3530
3593
3657
3721
2
3784
3848
3912
3975
4039
4103
4166
4230
4294
4357
3
4421
4484
4548
4611
4675
.4739
4802
4866
4929
4993
4
5056
5120
5183
5247
5310
5373
5437
5500
5564
5627
5
5691
5754
5817
5881
5944
6007
6071
6134
6197
6261
6
6324
6387
6451
6514
6577
6641
6704
6767
6830
6894
7
6957
7020
7083
7146
7210
7273
7336
7399
7462
7525
8
7588
7652
7715
7778
7841
7904
7967
8030
8093
8156
63
9
8219
8282
8345
8408
8471
8534
8597
8660
8723
8786
690
8849
8912
8975
9038
9101
9164
9227
9289
9352
9415
1
94/8
9541
9604
9667
9729
9792
9855
9918
9981
0043
2
840106
0169
0232
0294
0357
0420
0482
0545
0608
0671
3
0733
0796
0859
0921
0984
1046
1109
1172
1234
1297
4
1359
1422
1485
1547
1610
1672
1735
1797
1860
1922
5
1985
2047
2110
2172
2235
2297
2360
2422
2484
2547
6
2609
2672
2734
2796
2859
2921
2983
3046
3108
3170
7
3233
3295
3357
3420
3482
3544
3606
3669
3731
3793
8
3855
3918
3980
4042
4104
4166
4229
4291
4353
4415
9
4477
4539
4601
4664
4726
4788
4850
4912
4974
5036
700
5098
5160
5222
5284
5346
5408
5470
5532
5594
5656
62
1
5718
5780
5842
5904
5966
6028
6090
6151
6213
6275
2
6337
6399
6461
6523
6585
6646
6708
6770
6832
6894
3
6955
7017
7079
7141
7202
7264
7326
7388
7449
7511
4
7573
7634
7696
7758
7819
7881
7943
8004
8066
8128
5
8189
8251
8312
8374
8435
8497
8559
8620
8682
8743
6
8805
8366
8928
8989
9051
9112
9174
9235
9297
9358
7
9419
9431
9542
9604
9665
9726
9788
9849
9911
9972
8
850033
0095
0156
0217
0279
0340
0401
0462
0524
0585
9
0646
0707
0769
0830
0891
0952
1014
1075
1136
1197
710
1258
1320
1381
1442
1503
1564
1625
1686
1747
1809
1
1870
1931
1992
2053
2114
2175
2236
2297
2358
2419
61
2
2480
2541
2602
2663
2724
2785
2846
2907
2968
3029
3
3090
3150
3211
3272
3333
3394
3455
3516
3577
3637
4
3698
3759
3820
3881
3941
4002
4063
4124
4185
4245
5
4306
4367
4428
4488
4549
4610
4670
4731
4792
4852
6
4913
4974
5034
5095
5156
5216
5277
5337
5398
5459
7
5519
5580
5640
5701
5761
5822
5882
5943
6003
6064
8
6124
6185
6245
6306
6366
6427
6487
6548
6608
6668
9
6729 6789J 6850
6910
6970
7031
7091
7152
7212
7272
PROPORTIONAL PARTS.
Diff.
1
2
3
4
5
6
7
8
9
65
64
63
62
61
60
6.5
6.4
6.3
6.2
6.1
6.0 1
13.0
12.8
12.6
12.4
12.2
12.0
19.5
19.2
18.9
18.6
18.3
18.0
26.0
25.6
25.2
24.8
24.4
24.0
32.5
32.0
31.5
31.0
30.5
30.0
39.0
38:4
37.8
37.2
36.6
36.0
45.5
44.8
44.1
43.4
42.7
42.0
52.0
51.2
50.4
49.6
48.8
48.0
58.5
57.6
56.7
55.8
54.9
54.0
158
LOGARITHMS OF NUMBERS.
Ho. 720 L. 857.]
(No. 764 L.
N.
0
1
2
3
4
5
6
7
8
9
Diff.
720
857332
7393
7453
7513
7574
7634
7694
7755
7815
7875
7935
7995
8056
8116
S176
8236
8297
8357
8417
8477
2
8537
8597
8657
8718
8778
8838
8898
8958
9018
9078
3
9138
9198
9258
9318
9379
9439
9499
9559
9619
9679
60
4
9739
9799
9859
9918
9978
0038
0098
0158
021fi
fl?7fl
5
860338
0398
0458
0518
0578
0637
0697
0757
0817
U^/O
0877
6
0937
0996
1056
1116
1176
1236
1295
1355
1415
1475
7
1534
1594
1654
1714
1773
1833
1893
1952
2012
2072
8
2131
2191
2251
2310
2370
2430
2489
2549
2608
2668
9
2728
2787
2847
2906
2966
3025
3085
3144
3204
3263
730
3323
3382
3442
3501
3561
3620
3680
3739
3799
3858
1
3917
3977
4036
4096
4155
4214
4274
4333
4392
4452
2
4511
4570
4630
4689
4748
4808
4867
4926
4985
5045
3
5104
5163
5222
5282
5341
5400
5459
5519
5578
5637
4
5696
5755
5814
5874
5933
5992
6051
6110
6169
6228
5
6287
6346
6405
6465
6524
6583
6642
6701
6760
6819
6
6878
6937
6996
7055
7114
7173
7232
7291
7350
7409
59
7
7467
7526
7585
7644
7703
7762
7821
7880
7939
7998
8
8056
8115
8174
8233
8292
8350
8409
8468
8527
8586
9
8644
8703
8762
8821
8879
8938
8997
9056
9114
9173
740
9232
9290
9349
9408
9466
9525
9584
9642
9701
9760
1
9818
9877
9935
9994
0053
01 1 1
0170
0228
0287
0345
2
870404
0462
0521
0579
0638
0696
0755
0813
0872
0930
3
0989
1047
1106
1164
1223
1281
1339
1398
1456
1515
4
1573
1631
1690
1748
1806
1865
1923
1981
2040
2098
5
2156
2215
2273
2331
2389
2448
2506
2564
2622
2681
6
2739
2797
2855
2913
2972
3030
3088
3146
3204
3262
7
3321
3379
3437
3495
3553
3611
3669
3727
3785
3844
8
3902
3960
4018
4076
4134
4192
4250
4308
4366
4424
58
9
4482
4540
4598
4656
4714
4772
4830
4888
4945
5003
750
5061
5119
5177
5235
5293
5351
5409
5466
5524
5582
1
5640
5698
5756
5813
5871
5929
5987
6045
6102
6160
2
6218
6276
6333
6391
6449
6507
6564
6622
6680
6737
3
6795
6853
6910
6968
7026
7083
7141
7199
7256
7314
-
4
7371
7429
7487
7544
7602
7659
7717
7774
7832
7889
5
7947
8004
8062
8119
8177
8234
8292
8349
8407
8464
6
8522
8579
8637
8694
8752
8809
8866
8924
8981
9039
7
9096
9153
9211
9268
9325
9383
9440
9497
9555
9612
9669
9726
9784
9841
9898
9956
0013
0070
0127
0185
9
880242
0299
0356
0413
0471
0528
0585
0642
0699
0756
760
0814
0871
0928
0985
1042
1099
1156
1213
1271
1328
1385
1442
1499
1556
1613
1670
1727
1784
1841
1898
2
1955
2012
2069
2126
2183
2240
2297
2354
2411
2468
57
3
2525
2581
2638
2695
2752
2809
2866
2923
2980
3037
4
3093
3150
3207
3264
3321
3377
3434
3491
3548
3605
PROPORTIONAL, PARTS.
Diff.
1
2
3
4
5
6
7
8
9
59
58
57
56
5.9
5.8
5.7
5.6
11.8
11.6
11.4
11.2
17.7
17.4
17.1
16.8
*23.6
23.2
22.8
22.4
29.5
29.0
28.5
28.0
35.4
34.8
34.2
33.6
41.3
40.6
39.9
39.2
47.2
46.4
45.6
44.8
53.1
52.2
51.3
50.4
LOGARITHMS OF NUMBERS.
159
No. 765 L. 883.]
[No. 809 L. 908.
N.
0
1
2
3
4
5
6
7
8
9
Diff.
765
883661
3718
3775
3832
3888
3945
4002
4059
4115
4172
6
4229
4285
4342
4399
4455
4512
4569
4625
4682
4739
7
4795
4852
4909
4965
5022
5078
5135
5192
5248
5305
8
5361
5418
5474
5531
5587
5644
5700
5757
5813
5870
9
5926
5983
6039
6096
6152
6209
6265
6321
6378
6434
770
6491
6547
6604
6660
6716
6773
6829
6885
6942
6998
1
7054
7111
7167
7223
7280
7336
7392
7449
7505
7561
2
7617
7674
7730
7786
7842
-7898
7955
8011
8067
8123
3
8179
8236
8292
8348
8404
8460
8516
8573
8629
8685
A
8741
8797
8853
8909
8965
9021
9077
9134
9190
9246
9302
9862
9358
9918
9414
9974
9470
9526
9582
9638
9694
9750
9806
56
0030
0086
0141
0197
0253
0309
0365
7
890421
0477
0533
0589
0645
0700
0756
0812
0868
0924
8
0980
1035
1091
1147
1203
1259
1314
1370
1426
1482
9
1537
1593
1649
1705
1760
1816
1872
1928
1983
2039
780
2095
2150
2206
2262
2317
2373
2429
2484
2540
2595
2651
2707
2762
2818
2873
2929
2985
3040
3096
3151
2
3207
3262
3318
3373
3429
3484
3540
3595
3651
3706
3
3762
3817
3873
3928
3984
4039
4094
4150
4205
4261
4
4316
4371
4427
4482
4538
4593
4648
4704
4759
4814
5
4870
4925
4980
5036
5091
5146
5201
5257
5312
5367
6
5423
5478
5533
5588
5644
5699
5754
5809
5864
5920
7
5975
6030
6085
6140
6195
6251
6306
6361
6416
6471
8
6526
6581
6636
6692
6747
6802
6857
6912
6967
7022
9
7077
7132
7187
7242
7297
7352
7407
7462
7517
7572
55
790
7627
7682
7737
7792
7847
7902
7957
8012
8067
8122
1
8176
8231
8286
8341
8396
8451
8506
8561
8615
8670
2
8725
8780
8835
8890
8944
8999
9054
9109
9164
9218
3
9273
9328
9383
9437
9492
9547
9602
9656
9711
9766
4
9821
9875
9930
9985
0039
0094
0149
0203
0258
0312
5
900367
0422
0476
0531
0586
0640
0695
0749
0804
0859
6
0913
0968
1022
1077
1131
1186
1240
1295
1349
1404
7
1458
1513
1567
1622
1676
1731
1785
1840
1894
1948
8
2003
2057
2112
2166
2221
2275
2329
2384
2438
2492
9
2547
2601
2655
2710
2764
2818
2873
2927
2981
3036
800
3090
3144
3199
3253
3307
3361
3416
3470
3524
3578
1
3633
3687
3741
3795
3849
3904
3958
4012
4066
4120
2
4174
4229
4283
4337
4391
4445
4499
4553
4607
4661
3
4716
4770
4824
4878
4932
4986
5040
5094
5148
5202
4
5256
5310
5364
5418
5472
5526
5580
5634
5688
5742
54
5
5796
5850
5904
5958
6012
6066
6119
6173
6227
6281
6
6335
6389
6443
6497
6551
6604
6658
6712
6766
6820
7
6874
6927
6981
7035
7089
7143
7196
7250
7304
7358
8
7411
7465
7519
7573
7626
7680
7734
7787
7841
7895
9
7949
8002
8056
8110
8163
8217
8270
8324
8378
8431
PROPORTIONAL PARTS.
Diff.
1
2
3
4
5
6
7
8
9
57
56
55
54
5.7
5.6
5.5
5.4
11.4
11.2
11.0
10.8
17.1
16.8
16.5
16.2
22.8
22.4
22.0
21.6
28.5
28.0
27.5
27.0
34.2
33.6
33.0
32.4
39.9
39.2
38.5
37.8
45.6
44.8
44.0
43.2
51.3
50.4
49.5
48.6
LOGARITHMS OF NUMBERS.
No. 810 L. 908.)
[No. 854 L. 93*
N.
0
1
2
3
4
5
6
7
8
9
Diff.
810
908485
8539
8592
8646
8699
8753
8807
8860
8914
8967
9021
9074
9128
9181
9235
9289
9342
9396
9449
9503
2
9556
9610
9663
9716
9770
9823
9877
9930
9984
0037
3
910091
0144
0197
0251
0304
0358
0411
0464
0518
0571
4
0624
0678
0731
0784
0838
0891
0944
0998
1051
1104
5
1158
1211
1264
1317
1371
1424
1477
1530
1584
1637
6
1690
1743
1797
1850
1903
1956
2009
2063
2116
2169
7
2222
2275
2328
2381
2435
2488
2541
2594
2647
2700
8
2753
2806
2859
2913
2966
3019
3072
3125
3178
3231
9
3284
3337
3390
3443
3496
3549
3602
3655
3708
3761
53
820
3814
3867
3920
3973
4026
4079
4132
4184
4237
4290
1
4343
4396
4449
4502
4555
4608
4660
4713
4766
4819
2
4872
4925
4977
5030
5083
5136
5189
5241
5294
5347
3
5400
5453
5505
5558
5611
5664
5716
5769
5822
5875
4
5927
5980
6033
6085
6138
6191
6243
6296
6349
6401
5
6454
6507
6559
6612
6664
6717
6770
6822
6875
6927
6
6980
7033
7085
7138
7190
7243
7295
7348
7400
7453
7
7506
7558
7611
7663
7716
7768
7820
7873
7925
7978
8
8030
8083
8135
8188
8240
8293
8345
8397
8450
8502
9
8555
8607
8659
8712
8764
8816
8869
8921
8973
9026
830
9078
9130
9183
9235
9287
9340
9392
9444
9496
9549
1
9601
9653
9706
9758
9810
9862
9914
9Q67
0019
0071
2
920123
0176
0228
0280
0332
0384
0436
0489
0541
0593
3
0645
0697
0749
0801
0853
0906
0958
1010
1062
1114
5*-
4
1166
1218
1270
1322
1374
1426
1478
1530
1582
1634
5
1686
1738
1790
1842
1894
1946
1998
2050
2102
2154
6
2206
2258
2310
2362
2414
2466
2518
2570
2622
2674
7
2725
2777
2829
2881
2933
2985
3037
3089
3140
3192
8
3244
3296
3348
3399
3451
3503
3555
3607
3658
3710
9
3762
3814
3865
3917
3969
4021
4072
4124
4176
4228
840
4279
4331
4383
4434
4486
4538
4589
4641
4693
4744
1
4796
4848
4899
4951
5003
5054
5106
5157
5209
5261
2
5312
5364
5415
5467
5518
5570
5621
5673
5725
5776
3
5828
5879
5931
5982
6034
6085
6137
6188
6240
6291
4
6342
6394
6445
6497
6548
6600
6651
6702
6754
6805
5
6857
6908
6959
7011
7062
7114
7165
7216
7268
7319
6
7370
7422
7473
7524
7576
7627
7678
7730
7781
7832
7
7883
7935
7986
8037
8088
8140
8191
8242
8293
8345
8
8396
8447
8498
8549
8601
8652
8703
8754
8805
8857
9
8908
8959
9010
9061
9112
9163
9215
9266
9317
9368
850
9419
9470
9521
9572
9623
9674
9725
9776
9827
9879
1
9930
9981
51
0032
0083
0134
0185
0236
0287
0338
0389
2
930440
0491
0542
0592
0643
0694
0745
0796
0847
0898
3
0949
1000
1051
1102
1153
1204
1254
1305
1356
1407
4
1458
1509
1560
1610
1661
1712
1763
1814
1865
1915
PROPORTIONAL PARTS.
Diff.
1
2
3
4
5
6
7
8
»
9
53
52
51
50
5.3
5.2
5.1
5.0
10.6
.10.4
10.2
10.0
15.9
15.6
15.3
15.0
21.2
20.8
20.4
20.0
26.5
26.0
25.5
25.0
31.8
31.2
30.6
30.0
37.1
36.4
35.7
35.0
42.4
41.6
40.8
40.0
47.7
46.8
45.9
45.0
LOGARITHMS OF NUMBERS.
161
No. 855 L. 931. J
[No. 899 L. 954,
N.
0
1
3
3
4
5
6
7
8
9
Diff.
855
931966
2017
2068
2118
2169
2220
2271
2322
2372
2423
6
2474
2524
2575
2626
2677
2727
2778
2829
2879
2930
7
2981
3031
3082
3133
3183
3234
3285
3335
3386
3437
8
3487
3538
3589
3639
3690
3740
3791
3841
3892
3943
9
3993
4044
4094
4145
4195
4246
4296
4347
4397
4448
860
4498
4549
4599
4650
4700
4751
4801
4852
4902
4953
1
5003
5054
5104
5154
5205
5255
5306
5356
5406
5457
2
5507
5558
5608
5658
5709
5759
5809
5860
5910
5960
3
6011
6061
6111
6162
6212
6262
6313
6363
6413
6463
4
6514
6564
6614
6665
6715
6765
6815
6865
6916
6966
5
7016
7066
7116
7167
7217
7267
7317
7367
7418
7468
6
7518
7568
7618
7668
7718
7769
7819
7869
7919
7969
7
8019
8069
8119
8169
8219
8269
8320
8370
8420
8470
50
6
8520
8570
8620
8670
8720
8770
8820
8870
8920
8970
9
9020
9070
9120
9170
9220
9270
9320
9369
9419
9469
870
9519
9569
9619
9669
9719
9769
9819
9869
9918
9968
1
940018
0068
0118
0168
0218
0267
0317
0367
0417
0467
2
0516
0566
0616
0666
0716
0765
0815
0865
0915
0964
3
1014
1064
1114
1163
1213
1263
1313
1362
1412
1462
4
1511
1561
1611
1660
1710
1760
1809
1859
1909
1958
3
2003
2058
2107
2157
2207
2256
2306
2355
2405
2455
6
2504
2554
2603
2653
2702
2752
2801
2851
2901
2950
7
3000
3049
3099
3148
3198
3247
3297
3346
3396
3445
8
3495
3544
3593
3643
3692
3742
3791
3841
3890
3939
9
3989
4038
4088
4137
4186
4236
4285
4335
4384
4433
880
4483
4532
4581
4631
4680
4729
4779
4828
4877
4927
1
4976
5025
5074
5124
5173
5222
5272
5321
5370
5419
2
5469
5518
5567
5616
5665
5715
5764
5813
5862
5912
3
5961
6010
6059
6108
6157
6207
6256
6305
6354
6403
4
6452
6501
6551
6600
6649
6698
6747
6796
6845
6894
5
6943
6992
7041
7090
7139
7189
7238
7287
7336
7385
6
7434
7483
7532
7581
7630
7679
7728
7777
7826
7875
49
7
7924
7973
8022
8070
8119
8168
8217
8266
8315
8364
8
8413
8462
8511
8560
8608
8657
8706
8755
8804
8853
9
8902
8951
8999
9048
9097
9146
9195
9244
9292
9341
690
9390
9439
9488
9536
9585
9634
9683
9731
9780
9829
1
9878
9926
9975
0024
0073
0121
0170
0219
0267
0316
2
950365
0414
0462
0511
0560
0608
0657
0706
0754
0303
3
0851
0900
0949
0997
1046
1095
1143
1192
1240
1289
4
1338
1386
1435
1483
1532
1580
1629
1677
1726
1775
5
1823
1872
1920
1969
2017
2066
2114
2163
2211
2260
6
2308
2356
2405
2453
2502
2550
2599
2647
2696
2744
7
2792
2841
2889
2938
2986
3034
3083
3131
3180
3228
8
3276
3325
3373
3421
3470
3518
3566
3615
3663
3711
9
3760
3808
3856
3905
3953
4001
4049
4098
4146
4194
PROPORTIONAL PARTS.
Diff.
1
2
3
4
5
6
7
8
9
45.9
45.0
44.1
43.2
51
50
49
48
5.1
5.0
4.9
48
10.2
10.0
9.8
9.6
15.3
15.0
14.7
14.4
20.4
20.0
19.6
19.2
25.5
25.0
24.5
24.0
30.6
30.0
29.4
28.8
35.7
35.0
34.3
33.6
40.8
40.0
39.2
38.4
162
LOGARITHMS OF NUMBERS.
Ho. 900 L. 954.J
[No. 944 L. 975.
N.
1 0
1
2
3
4
5
6
7
8
9
Diff.
900
954243
4291
4339
4387
4435
4484
4532
4580
4628
4677
.
1
4725
4773
4821
4869
4918
4966
5014
5062
5110
5158
2
5207
5255
5303
5351
5399
5447
5495
5543
5592
5640
3
5688
5736
5784
5832
5880
5928
5976
6024
6072
6120
4
6168
6216
6265
6313
6361
6409
6457
6505
6553
6601
5
6649
6697
6745
6793
6840
6888
6936
6984
7032
7080
48
6
7128
7176
7224
7272
7320
7368
7416
7464
7512
7559
7
7607
7655
7703
7751
7799
7847
7894
7942
7990
8038
8
8086
8134
8181
8229
8277
8325
8373
8421
8468
8516
9
8564
8612
8659
8707
8755
8803
8850
8898
8946
8994
910
9041
9089
9137
9185
9232
9280
9328
9375
9423
9471
I
9518
9566
9614
9661
9709
9757
9804
9852
9900
9947
2
9995
0042
0090
Atao
ni oe
n?^
A7Af
rjaoo
n^7A
3
960471
0518
0566
V 1 JO
0613
U 1 O J
0661
\jLjj
0709
UZOU
0756
\)jZ,c
0804
U.3/O
0851
0423
0899
4
0946
0994
1041
1089
1136
1184
1231
1279
1326
1374
5
1421
1469
1516
1563
1611
1658
1706
1753
1801
1848
6
1895
1943
1990
2038
2085
2132
2180
2227
2275
2322
7
2369
2417
2464
2511
2559
2606
2653
2701
2748
2795
8
2843
2890
2937
2985
3032
3079
3126
3174
3221
3268
9
3316
3363
3410
3457
3504
3552
3599
3646
3693
3741
920
3788
3835
3882
3929
3977
4024
4071
4118
4165
4212
1
4260
4307
4354
4401
4448
4495
4542
4590
4637
4684
2
4731
4778
4825
4872
4919
4966
5013
5061
5108
5155
3
5202
5249
5296
5343
5390
5437
5484
5531
5578
5625
4
5672
5719
5766
5813
5860
5907
5954
6001
6048
6095
47
5
6142
6189
6236
6283
6329
6376
6423
6470
6517
6564
6
6611
6658
6705
6752
6799
6845
6892
6939
6986
7033
7
7080
7127
7173
7220
7267
7314
7361
7408
7454
7501
8
7548
7595
7642
7688
7735
7782
7829
7875
7922
7969
9
8016
8062
8109
8156
8203
8249
8296
8343
8390
8436
930
8483
8530
8576
8623
8670
8716
8763
8810
8856
8903
1
8950
8996
9043
9090
9136
9183
9229
9276
9323
9369
2
9416
9463
9509
9556
9602
9649
9695
9742
9789
9835
3
9882
9928
9975
0021
0068
01 14
0161
0207
0254
0300
4
970347
0393
0440
0486
0533
0579
0626
0672
0719
0765
5
0812
0858
0904
0951
0997
1044
1090
1137
1183
1229
6
1276
1322
1369
1415
1461
1508
1554
1601
1647
1693
7
1740
1786
1832
1879
1925
1971
2018
2064
2110
2157
8
2203
2249
2295
2342
2388
2434
2481
2527
2573
2619
9
2666
2712
2758
2804
2851
2897
2943
2989
3035
3082
940
3128
3174
3220
3266
3313
3359
3405
3451
3497
3543
1
3590
3636
3682
3728
3774
3820
3866
3913
3959
4005
2
4051
4097
4143
4189
4235
4281
4327
4374
4420
4466
3
4512
4558
4604
4650
4696
4742
4788
4834
4880
4926
4
4972
5018
5064
5110
5156
5202
5248
5294
5340
5386
46
PROPORTIONAL PARTS.
Diff.
1
2
3
4
5
6
7
8
9
47
46
4.7
4.6
9.4
9.2
14.1
13.8
18.8
18.4
23.5
23.0
28.2
27.6
32.9
32.2
37.6
36.8
42.3
41.4
LOGARITHMS OF NUMBERS.
163
No. 945 L. 975.J
(No. 989 L. 995.
N.
0
1
3
3
4
5
6
7
8
9
Diff.
945
975432
5478
5524
5570
5616
5662
5707
5753
5799
5845
6
5891
5937
5983
6029
6075
6121
6167
6212
6258
6304
7
6350
6396
6442
6488
6533
6579
6625
6671
6717
6763
8
6808
6854
6900
6946
6992
7037
7083
7129
7175
7220
9
7266
7312
7358
7403
7449
7495
7541
7586
7632
7678
950
7724
7769
7815
7861
7906
7952
7998
8043
8089
8135
1
8181
8226
8272
8317
8363
8409
8454
8500
8546
8591
2
8637
8683
8728
8774
8819
8865
8911
8956
9002
9047
3
9093
9138
9184
9230
9275
9321
9366
9412
9457
9503
4
9548
9594
9639
9685
9730
9776
9821
9867
9912
9958
5
980003
0049
0094
0140
0185
0231
0276
0322
0367
0412
6
0458
0503
0549
0594
0640
0685
0730
0776
0821
0867
7
0912
0957
1003
1048
1093
1139
1184
1229
1275
1320
8
1366
1411
1456
1501
1547
1592
1637
1683
1728
1773
9
1819
1864
1909
1954
2000
2045
2090
2135
2181
2226
960
2271
2316
2362
2407
2452
2497
2543
2588
2633
2678
1
2723
2769
2814
2859
2904
2949
2994
3040
3085
3130
2
3175
3220
3265
3310
3356
3401
3446
3491
3536
3581
3
3626
3671
3716
3762
3807
3852
3897
3942
3987
4032
4
4077
4122
4167
4212
4257
4302
4347
4392
4437
4482
5
4527
4572
4617
4662
4707
4752
4797
4842
4887
4932
45
6
4977
5022
5067
5112
5157
5202
5247
5292
5337
5382
7
5426
5471
5516
5561
5606
5651
5696
5741
5786
5830
8
5875
5920
5965
6010
6055
6100
6144
6189
6234
6279
9
6324
6369
6413
6458
6503
6548
6593
6637
6682
6727
6772
6817
6861
6906
6951
6996
7040
7085
7130
7175
1
7219
7264
7309
7353
7398
7443
7488
7532
7577
7622
2
7666
7711
7756
7800
7845
7890
7934
7979
8024
8068
3
8113
8157
8202
8247
8291
8336
8381
8425
8470
8514
8559
8604
8648
8693
8737
8782
8826
8871
8916
8960
5
9005
9049
9094
9138
9183
9227
9272
9316
9361
9405
9450
9494
9539
9583
9628
9672
9717
9761
9806
9850
7
7
9395
9939
9983
0028
0072
01 17
0161
0206
025C
O7O4
8
990339
0383
0428
0472
0516
0561
0605
0650
0694
U^Vn
0738
9
0783
0827
0871
0916
0960
1004
1049
1093
1137
1182
980
1226
1270
1315
1359
1403
1448
1492
1536
1580
1625
1
1669
1713
1758
1802
1846
1890
1935
1979
2023
2067
2
2111
2156
2200
2244
2288
2333
2377
2421
2465
2509
3
2554
2598
2642
2686
2730
2774
2819
2863
2907
2951
4
2995
3039
3083
3127
3172
3216
3260
3304
3348
3392
5
3436
3480
3524
3568
3613
3657
3701
3745
3789
3833
6
3877
3921
3965
4009
4053
4097
4141
4185
4229
4273
7
4317
4361
4405
4449
4493
4537
4581
4625
4669
4713
44
8
4757
4801
4845
4889
4933
4977
5021
5065
5108
5152
9
5196
5240
5284
5328
5372
5416
5460
5504
5547
5591
PROPORTIONAL PARTS.
Diff.
46
45
44
43
1
3
3
4
5
6
7
8
9
4.6
4.5
4.4
4.3
9.2
9.0
8.8
8.6
13.8
13.5
13.2
12.9
18.4
18.0
17.6
17.2
23.0
22.5
22.0
21.5
27.6
27.0
26.4
25.8
32.2
31.5
30.8
30.1
36.8
36.0
35.2
34.4
41.4
40.5
39.6
38.7
164
HYPERBOLIC LOGARITHMS.
No. 990 L. 995 J
[No.999L.999.
N.
0
1
2
3
4
5
6
7
8
9
Diff.
990
995635
5679
5723
5767
5811
5854
5898
5942
5986
6030
1
6074
6117
6161
6205
6249
6293
6337
6380
6424
6468
44
2
6512
6555
6599
6643
6687
6731
6774
6818
6862
6906
3
6949
6993
7037
7080
7124
7168
7212
7255
7299
7343
4
7386
7430
7474
7517
7561
7605
7648
7692
7736
7779
3
7823
7867
7910
7954
7998
8041
8085
8129
8172
8216
6
8259
8303
8347
8390
8434
8477
8521
8564
8608
8652
7
8695
8739
8782
8826
8869
8913
8956
9000
9043
9087
8
9131
9174
9218
9261
9305
9348
9392
9435
9479
9522
9
9565
9609
9652
9696
9739
9783
9826
9870
9913
9957
43
HYPERBOLIC LOGARITHMS.
No.
Log.
No.
Log.
No.
Log.
No.
Log.
No.
Log.
1.01
.0099
1.45
.3716
.89
.6366
2.33
.8458
2.77
.0188
1.02
.0198
1.46
.3784
.90
.6419
2.34
.8502
2.78
.0225
1.03
.0296
1.47
.3853
.91
.6471
2.35
.8544
2.79
.0260
1.04
.0392
1.48
.3920
.92
.6523
2.36
.8587
2.80
.0296
1.05
.0488
1.49
.3988
.93
.6575
2.37
.8629
2.81
.0332
1.06
.0583
1.50
.4055
.94
.6627
2.38
.8671
2.82
.0367
1.07
.0677
1.51
.4121
.95
.6678
2.39
.8713
2.83
.0403
1.08
.0770
1.52
.4187
.96
.6729
2.40
.8755
2.84
.0438
1.09
.0862
1.53
.4253
.97
.6780
2.41
.8796
2.85
.0473
1.10
.0953
1.54
.4318
.98
.6831
2.42
.8838
2.86
.0508
1.11
.1044
1.55
.4383
1.99
.6881
2.43
.8879
2.87
.0543
1.12
.1133
1.56
.4447
2.00
.6931
2.44
.8920
2.88
.0578
1.13
.1222
1.57
.4511
2.01
.6981
2.45
.8961
2.89
.0613
1.14
.1310
1.58
.4574
2.02
.7031
2.46
.9002
2.90
.0647
1.15
.1398
1.59
.4637
2.03
.7080
2.47
.9042
2.91
.0682
1.16
.1484
1.60
.4700
2.04
.7129
2.48
.9083
2.92
.0716
1.17
.1570
1.61
.4762
2.05
.7178
2.49
.9123
2.93
.0750
1.18
.1655
1.62
.4824
2.06
.7227
2.50
.9163
2.94
.0784
1.19
.1740
1.63
.4886
2.07
.7275
2.51
.9203
2.95
.0818
1.20
.1823
1.64
.4947
2.08
.7324
2.52
.9243
2.96
.0852
1.21
.1906
1.65
.5008
2.09
.7372
2.53
.9282
2.97
.0886
1.22
.1988
J.66
.5068
2.10
.7419
2.54
.9322
2.98
.0919
1.23
.2070
1.67
.5128
2.11
.7467
2.55
.9361
2.99
.0953
1.24
.2151
1.68
.5188
2.12
.7514
2.56
.9400
3.00
.0986
1.25
.2231
1.69
.5247
2.13
.7561
2.57
.9439
3.01
.1019
1.26
.2311
1.70
.5306
2.14
.7608
2.58
.9478
3.02
.1056
1.27
.2390
1.71
.5365
2.15
.7655
2.59
.9517
3.03
.1081
1.28
.2469
1.72
.5423
2.16
.7701
2.60
.9555
3.04
.1113
1.29
.2546
1.73
.5481
2.17
.7747
2.61
.9594
3.05
.1154
1.30
.2624
1.74
.5539
2.18
.7793
2.62
.9632
3.06
.1187
1.31
.2700
1.75
.5596
2.19
.7839
2.63
.9670
3.07
.1219
1.32
.2776
1.76
.5653
2.20
.7885
2.64
.9708
3.08
.1246
1.33
.2852
1.77
.5710
2.21
.7930
2.65
.9746
3.09
.1284
1.34
.2927
1.78
.5766
2.22
.7975
2.66
.9783
3.10
.1312
1.35
.3001
1.79
.5822
2.23
.8020
2.67
.9821
3.11
.1349
1.36
.3075
1.80
.5878
2.24
.8065
2.68
.9858
3.12
.1378
1.37
.3148
1.81
.5933
2.25
.8109
2.69
.9895
3.13
.1410
1.38
.3221
1.82
.5988
2.26
.8154
2.70
.9933
3.14
.1442
1.39
.3293
1.83
.6043
2.27
.8198
2.71
.9969
3.15
.1474
1.40
.3365
1.84
.6098
2.28
.8242
2.72
1 .0006
3.16
.1506
1.41
.3436
1.85
.6152
2.29
.8286
2.73
1 .0043
3.17
.1537
1.42
.3507
1.86
.6206
2.30
.8329
2.74
1 .0080
3.18
.1569
1.43
.3577
1.87
.6259
2.31
.8372
2.75
1.0116
3.19
.1600
1.44
.3646
1.88
.6313
2.32
.8416
2.76
1.0152
3.20
.1632
HYPERBOLIC LOGARITHMS.
165
No.
Log.
No.
Log.
No.
Log.
No.
Log.
No.
Log.
3.21
.1663
3.87
.3533
4.53
.5107
5.19
.6467
5.85
.7664
3.22
.1694
3.88
.3558
4.54
.5129
5.20
.6487
5.86
.7681
3.23
.1725
3.89
.3584
4.55
.5151
5.21
.6506
5.87
.7699
3.24
.1756
3.90
.3610
4.56
.5173
5.22
.6525
5.88
.7716
3.25
.1787
3.91
.3635
4.57
.5195
5.23
.6544
5.89
.7733
3.26
.1817
3.92
.3661
4.58
.5217
5.24
.6563
5.90
.7750
3.27
.1848
3.93
.3686
4.59
.5239
5.25
.6582
5.91
.7766
3.28
.1878
3.94
.3712
4.60
.5261
5.26
.6601
5.92
.7783
3.29
.1909
3.95
.3737
4.61
.5282
5.27
.6620
5.93
.7800
3.30
.1939
3.96
.3762
4.62
.5304
5.28
.6639
5.94
.7817
3.31
.1969
3.97
.3788
4.63
.5326
5.29
.6658
5.95
.7834
3.32
.1999
3.98
.3813
4.64
.5347
5.30
.6677
. 5.96
.7851
3.33
.2030
3.99
.3838
4.65
.5369
5.31
.6696
5.97
.7867
3.34
.2060
4.00
.3863
4.66
.5390
5.32
.6715
5.98
.7884
3.35
.2090
4.01
.3888
4.67
.5412
5.33
.6734
5. 99'
.7901
3.36
.2119
4.02
.3913
4.68
.5433
5.34
.6752
6.00
.7918
3.37
.2149
4.03
.3938
4.69
.5454
5.35
.6771
6.01
.7934
3.38
.2179
4.04
.3962
4.70
.5476
5.36
.6790
6.02
.7951
3.39
.2208
4.05
.3987
4.71
.5497
5.37
.6808
6.03
.7967
3.40
.2238
4.06
.4012
4.72
.5518
5.38
.6827
6.04
.7984
3.41
.2267
4.07
.4036
4.73
.5539
5.39
.6845
6.05
.8001
3.42
.2296
4.08
.4061
4.74
.5.560
5.40
.6864
606
.8017
3.43
.2326
4.09
.4085
4.75
.5581
5.41
.6882
6.07
.8034
3.44
.2355
4.10
.4110
4.76
.5602
5.42
.6901
6.08
.8050
3.45
.2384
4.11
.4134
4.77
.5623
5.43
.6919
6.09
.8066
3.46
.2413
4.12
.4159
4.78
.5644
5.44
.6938
6.10
.8083
3.47
.2442
4.13
.4183
4.79
.5665
5.45
.6956
6.11
.8099
3.48
.2470
4.14
.4207
4.80
.5686
5.46
.6974
6.12
.8116
3.49
.2499
4.15
.4231
4.81
.5707
5.47
.6993
6.13
.8132
3.50
.2528
4.16
.4255
4.82
.5728
5.48
.7011
6.14
.8148
3.51
.2556
4.17
.4279
4.83
.5748
5.49
.7029
6.15
.8165
3.52
.2585
4.18
.4303
4.84
.5769
5.50
.7047
6.16
.8181
3.53
.2613
4.19
.4327
4.85
.5790
5.51
.7066
6.17
.8197
3.54
.2641
4.20
.4351
4.86
.5810
5.52
.7084
6.18
.8213
3.55
.2669
4.21
.4375
4.87
.5831
5.53
.7102
6.19
.8229
3.56
.2698
4.22
.4398
4.88
5851
5.54
.7120
6.20
.8245
3.57
.2726
4.23
.4422
4.89
.5872
5.55
.7138
6.21
.8262
3.58
.2754
4.24
4446
4.90
.5892
5.56
.7156
6.22
.8278
3.59
.2782
4.25
.4469
4.91
.5913
5.57
.7174
6.23
.8294
3.60
.2809
4.26
.4493
4.92
.5933
5.58
.7192
6.24
.8310
3.61
.2837
4.27
.4516
4.93
.5953
5.59
.7210
6.25
.8326
3.62
.2865
4.28
.4540
4.94
.5974
5.60
.7228
6.26
.8342
3.63
.2892
4.29
.4563
4.95
.5994
5.61
.7246
6.27
.8358
3.64
.2920
4.30
.4586
4.96
.6014
5.62
.7263
6.28
.8374
365
.2947
4.31
.4609
4.97
.6034
5.63
.7281
6.29
.8390
3.66
.2975
4.32
.4633
4.98
.6054
5.64
.7299
6.30
.8405
3.67
.3002
4.33
.4656
4.99
.6074
5.65
.7317
6.31
.8421
3.68
.3029
4.34
.4679
5.00
.6094
5.66
.7334
6.32
.8437
3.69
.3056
4.35
.4702
5.01
.6114
5.67
.7352
6.33
.8453
3.70
.3083
4.36
.4725
5.02
.6134
5.68
.7370
6.34
8469
3.71
.3110
4.37
.4748
5.03
.6154
5.69
.7387
6.35
.8485
3.72
.3137
4.38
.4770
5.04
.6174
5.70
.7405
6.36
.8500
3.73
.3164
4.39
.4793
5.05
.6194
5.71
.7422
6.37
.8516
3.74
.3191
4.40
.4816
5.06
.6214
5.72
.7440
6.38
.8532
3.75
.3218
4.41
.4839
5.07
.6233
5.73
.7457
6.39
.8547
3.76
.3244
4.42
.4861
5.08
.6253
5.74
.7475
6.40
.8563
3.77
.3271
4.43
.4884
5.09
.6273
5.75
.7492
6.41
.8579
3.78
.3297
4.44
.4907
5.10
.6292
5.76
.7509
6.42
.8594
3.79
.3324
4.45
.4929
5.11
.6312
5.77
.7527
6.43
.8610
3.80
.3350
4.46
.4951
5.12
.6332
5.78
.7544
6.44
.8625
3.81
.3376
4.47
.4974
5.13
.6351
5.79
.7561
6.45
.8641
3.82
.3403
4.48
.4996
5.14
.6371
5.80
.7579
6.46
.8656
3.83
.3429
4.49
.5019
5.15
.6390
5.81
.7596
6.47
.8672
3.84
.3455
4.50
.5041
5.16
.6409
5.82
.7613
6.48
8687
3.85
.3481
4.51
.5063
5.17
.6429
5.83
1 .7630
6.49
.8703
3.86
.3507
4.52
.5085
5.18
.6448
5.84
1.7647
6.50
.8718
106
HYPERBOLIC LOGARITHMS.
No.
Log.
No.
Log.
No.
Log.
No.
Log.
No
Log.
6.51
1.8733
7.15
.9671
7.79
2.0528
8.66
2.1587
9.94
2.2966
6.52
1.8749
7.16
.9685
7.80
2.0541
8.68
2.1610
9.96
2.2986
6.53
1 .8764
7.17
.9699
7.81
2.0554
8.70
2.1633
9.98
2.3006
6.54
1.8779
7.18
.9713
7.82
2.0567
8.72
2 1656
10.00
2.3026
6.55
1.8795
7.19
.9727
7.83
2.0580
8.74
2.1679
10.25
2.3279
6.56
1.8810
7.20
.9741
7.84
2.0592
8.76
2.1702
10.50
2.3513
6.57
1.8825
7.21
.9754
7.85
2.0605
8.78
2.1725
10.75
2.3749
6.58
1 .8840
7.22
.9769
7.86
2.0618
8.80
2.1748
11.00
2.3979
6.59
1.8856
7.23
.9782
7.87
2.0631
8.82
2.1770
11.25
2.4201
6.60
1.8871
7.24
.9796
7.88
2.0643
8.84
2.1793
11.50
2.4430
6.61
1 .8886
7.25
.9810
7.89
2.0656
8.86
2.1815
11.75
2.4636
6.62
1.8901
7.26
.9824
7.90
2.0669
8.88
2.1838
12.00
2.4849
6.63
1.8916
7.27
.9838
7.91
2.0681
8.90
2.1861
12.25
2.5052
6.64
1 .893 1
7.28
.9851
7.92
2.0694
8.92
2.1883
12.50
2.5262
6.65
1 .8946
7.29
.9865
7.93
2.0707
8.94
2.1905
12.75
2.5455
6.66
1 8961
7.30
.9879
7.94
2.0719
8.96
2.1928
13.00
2.5649
6.67
1.8976
7.31
.9892
7.95
2.0732
8.98
2.1950
13.25
2.5840
6.68
1.8991
7.32
.9906
7.96
2.0744
9.00
2.1972
13.50
2.6027
6.69
1 .9006
7.33
.9920
7.97
2.0757
9.02
2.1994
13.75
2.621 1
6.70
1.9021
7.34
.9933
7.98
2.0769
9.04
2.2017
14.00
2.6391
6.71
1 .9036
7.35
.9947
7.99
2.0782
9.06
2.2039
14.25
2.6567
6.72
1.9051
7.36
.9961
800
2.0794
9.08
2.2061
14.50
2.6740
6.73
1 .9066
7.37
.9974
8.01
2.0807
9.10
2.2083
14.75
2.6913
6.74
1.9081
7.38
.9988
8.02
2.0819
9.12
2.2105
15.00
2.7081
6.75
1 .9095
7.39
2.0001
8.03
2.0832
9.14
2.2127
15.50
2.7408
6.76
1.9110
7.40
2.0015
8.04
2.0844
9.16
2.2148
16.00
2.7726
6.77
1.9125
7.41
2.0028
8.05
2.0857
9.18
2.2170
16.50
2.8034
6.78
1.9140
7.42
2.0041
8.06
2.0869
9.20
2.2192
17.00
2.8332
6.79
1.9155
7.43
2.0055
8.07
2.0882
9.22
2.2214
17.50
2.8621
6.80
1.9169
7.44
2.0069
8.08
2.0894
924
2.2235
18.00
2.8904
6.81
1.9184
7.45
2.0082
8.09
2.0906
9.26
2.2257
18.50
2.9178
6.82
1.9199
7.46
2.0096
8.10
2.0919
9.28
2.2279
19.00
2.9444
6.83
1.9213
7.47
2.0108
8.11
2.0931
9.30
2.2300
19.50
2.9703
6.84
1 .9228
7.48
2.0122
8.12
2.0943
9.32
2.2322
20.00
2.9957
6.85
1 .9242
7.49
2.0136
8.13
2.0956
9.34
2.2343
21
3.0445
6.86
1.9257
7.50
2.0149
8,14
2.0968
9.36
2.2364
22
3.0910
6.87
1.9272
7.51
2.0162
8.15
2.0980
9.38
2.2386
23
3.1355
6.88
1 .9286
7.52
2.0176
8.16
2.0992
9.40
2.2407
24
3.1781
6.89
1.9301
7.53
2.0189
8.17
2.1005
9:42
2.2428
25
3.2189
6.90
1 .93 1 5
7.54
2.0202
8.18
2.1017
9.44
2.2450
26
3.2581
N6.91
1 .9330
7.55
2.0215
8.19
2.1029
9.46
2.2471
27
3.2958
6.92
1.9344
7.56
2.0229
8.20
2.1041
9.48
2.2492
28
3.3322
6.93
1.9359
7.57
2.0242
8.22
2.1066
9.50
2.2513
29
3.3673
6.94
1.9373
7.58
2.0255
8.24
2.1090
9.52
2.2534
30
3.4012
6.95
1.9387
7.59
2.0268
8.26
2.1114
9.54
2.2555
31
3.4340
6.96
1 .9402
7.60
2.0281
8.28
2.1138
9.56
2.2576
32
3.4657
6.97
1.9416
7.61
2.0295
8.30
2.1163
9.58
2.2597
33
3.4965
6.98
1 .9430
7.62
2.0308
8.32
2.1187
9.60
2.2618
34
3.5263
6.99
1 .9445
7.63
2.0321
8.34
2.1211
9.62
2.2638
35
3.5553
7.00
1 .9459
7.64
2.0334
8.36
2.1235
9.64
2.2659
36
3.5835
7.01
1 .9473
7.65
2.0347
8.38
2.1258
9.66
2.2680
37
3.6109
7.02
1 .9488
7.66
2.0360
8.40
2.1282
9.68
2.2701
38
3.6376
7.03
1 .9502
7.67
2.0373
8.42
2.1306
9.70
2.2721
39
3.6636
7.04
1.9516
7.68
2.0386
8.44
2.1330
9.72
2.2742
40
3.6889
7.05
1.9530
7.69
2.0399
8.46
2.1353
9.74
2.2762
41
3.71J6
7.06
1.9544
7.70
2.0412
8.48
2.1377
9.76
2.2783
42
3.7377
7.07
1.9559
7.71
2.0425
8.50
2.1401
9.78
2.2803
43
3.7612
7.08
1.9573
7.72
2.0438
8.52
2.1424
9.80
2.2824
44
3.7842
7.09
1.9587
7.73
2.0451
8.54
2.1448
9.82
2.2844
45
3.8067
7.10
1.9601
7.74
2.0464
8.56
2.1471
9.84
2.2865
46
3.8286
7.11
1.9615
7.75
2.0477
8.58
2.1494
9.86
2.2885
47
3.8501
7.12
1 .9629
7.76
2.0490
8.60
2.1518
9.88
2.2905
48
3.8712
7.13
1 .9643
7.77
2.0503
8.62
2.1541
9.90
2.2925
49
3.8918
7.14
1.9657
7.78
2.0516
8.64
2.1564
9.92
2.2946
50
3.9120
LOGARITHMIC TRIGONOMETRICAL FUNCTIONS.
167
LOGARITHMIC SINES, ETC.
1
Sine.
Cosec.
Versin.
Tangent
Cotan.
Covers.
Secant.
Cosine.
bb
0)
Q
o
n.Neg.
nfinite.
n.Neg.
In.Neg.
Infinite.
0.00000
1 0.00000
0.00000
90
1
.24186
1.75814
6.18271
8.24192
11.75808
9.99235
10.00007
9.99993
89
2
.54282
1.43718
6.78474
8.54308
1 1 .45692
9.98457
10.00026
9.99974
88
3
.71880
1.28120
7.13687
8.71940
1 1 .28060
9.97665
10.00060
9.99940
87
4
.84358
1.15642
7.38667
8.84464
11.15536
9.96860
10.00106
9.99894
80
5
.94030
1.05970
7.58039
8.94195
1 1 .05805
9.96040
10.00166
9.99834
85
6
.01923
0.98077
7.73863
9.02162
10.97838
9.95205
10.00239
999761
84
7
9.08589
0.91411
7.87238
9.08914
10.91086
9.94356
10.00325
9.99675
83
8
.14356
0.85644
7.98820
9.14780
10.85220
9.93492
10.00425
9.99575
82
9
.19433
0.80567
8.09032
9.19971
10.80029
9.92612
0.00538
9.99462
81
10
9.23967
0.76033
8.18162
9.24632
10.75368
9.91717
10.00665
9.99335
80
11
9.28060
0.71940
8.26418
9.28865
10.71135
9.90805
10.00805
9.99195
79
12
9.31788
0.68212
8.33950
9.32747
10.67253
9.89877
10.00960
9.99040
78
13
9.35209
0.64791
8.40875
9.36336
0.63664
9.88933
10.01128
9.98872
77
14
9.38368
0.61632
8.47282
9.39677
0.60323
9.87971
10.01310
9.98690
76
15
9.41300
0.58700
8.53243
9.42805
10.57195
9.86992
10.01506
9.98494
75
16
9.44034
0.55966
8.58814
9.45750
10.54250
9.85996
10.01716
9.98284
74
17
9.46594
0.53406
8.64043
9 48534
10.51466
9.84981
10.01940
9.98060
73
18
9 48998
0.51002
8.68969
9.51178
10.48822
9.83947
10.02179
9.97821
72
19
9.51264
10.48736
8.73625
9.53697
10.46303
9.82894
10.02433
9.97567
71
20
9.53405
10.46595
8.78037
9.56107
10.43893
9.81821
10.02701
9.97299
70
21
9.55433
10.44567
8.82230
9.58418
10.41582
9.80729
10.02985
9.97015
69
22
9.57358
10.42642
8.86223
9.60641
10.39359
9.79615
10.03283
9.96717
68
23
9.59188
10.40812
8.90034
9.62785
10.37215
9.78481
10.03597
9.96403
67
24
9.6093 1
10.39069
8.93679
9.64858
10.35142
9.77325
10.03927
9.96073
66
25
9.62595
10.37405
8.97170
9.66867
10.33133
9.76146
10.04272
9.95728
65
26
9.64184
10.35816
9.00521
9.68818
10.31182
9.74945
10.04634
9.95366
64
27
9.65705
10.34295
9.03740
9.70717
10.29283
9.73720
10.05012
9.94988
63
28
9.67161
10.32839
9.06838
9.72567
10.27433
9.72471
10.05407
9.94593
62
29
9.68557
10.31443
9.09823
9.74375
10.25625
9.71197
10.05818
9.94182
61
30
9.69897
10.30103
9.12702
9.76144
10.23856
9.69897
10.06247
9.93753
60
31
9.71184
10.28816
9.15483
9.77877
10.22123
9.68571
10.06693
9.93307
59
32
9.72421
10.27579
9.18171
9.79579
10.20421
9.67217
10.07158
9.92842
58
33
9.73611
10.26389
9.20771
9.81252
10.18748
9.65836
10.07641
9.92359
57
34
9.74756
10.25244
9.23290
9.82899
10.17101
9.64425
10.08143
9.91857
56
35
9.75859
10.24141
9.25731
9.84523
10.15477
9.62984
10.08664
9.91336
55
36
9.76922
10.23078
9.28099
9.86126
10.13874
9.61512
10.09204
9.90796
54
37
9.77946
10.22054
9.30398
9.87711
10.12289
9.60008
10.09765
9.90235
53
38
9.78934
10.21066
9.32631
9.89281
10.10719
9.58471
10.10347
9.89653
52
39
9.79887
10.20113
9.34802
9.90837
10.09163
9.56900
10.10950
9.89050
51
40
9.80807
10.19193
9.36913
9.92381
10.07619
9.55293
10.11575
9.88425
50
41
9.81694
10.18306
9.38968
9.93916
10.06084
9.53648
10.12222
9.87778
49
42
9.82551
10.17449
9.40969
9.95444
10.04556
9.51966
10.12893
9.87107
48
43
9.83378
10.16622
9.42918
9.96966
10.03034
9.50243
10.13587
9.86413
47
44
9.84177
10.15823
9.44818
9.98484
10.01516
9.48479
10.14307
9.85693
46
45
9.84949
10.15052
9.4667
10.00000
10.00000
9.46671
10.15052
9.84949
45
Cosine
Secant.
Covers
Cotan.
Tangent
Versin.
Cosec.
Sine.
From 45° to 90° read from bottom of table upwards.
168
LOGARITHMS OF NUMBERS.
Four-place Logarithms of Numbers to 1000.
For six-place logarithms of numbers to 10,000, see pp. 137 to 164.
No.
0
1
2
3
4
5
6
1
8
9
No.
0
0000
3010
4771
6021
6990
7782
8451
9031
9542
0
2
3
4
5
6
7
8
9
0000
3010
4771.
6021
6990
7782
8451
9031
9542
0414
3222
4914
6128
7076
7853
8513
9085
9590
0792
3424
5052
6232
7160
7924
8573
9138
9638
1139
3617
5185
6335
7243
7993
8633
9191
9685
1461
3802
5315
6435
7324
8062
8692
9243
9731
1761
3979
5441
6532
7404
8129
8751
9294
9777
2041
4150
5563
6628
7482
8195
8808
9345
9823
2304
4314
5682
6721
7559
8261
8865
9395
9868
2553
4472
5798
6812
7634
8325
8921
9445
9912
2788
4624
5911
6902
7709
8388
8976
9494
9956
1
2
3
4
5
6
7
8
9
10
0000
0043
0086
0128
0170
0212
0253
0294
0334
0374
10
It
12
13
14
15
16
17
18
19
0414
0792
1139
1461
1761
2041
2304
2553
2788
0453
0828
1173
1492
1790
2068
2330
2577
2810
0492
0864
1206
1523
1818
2095
2355
2601
2833
0531
0899
1239
1553
1847
2122
2380
2625
2856
0569
0934
1271
1584
1875
2148
2405
2648
2878
0607
0969
1303
1614
1903
2175
2430
2672
2900
0645
1004
1335
1644
1931
2201
2455
2695
2923
0682
1038
1367
1673
1959
2227
2480
2718
2945
0719
1072
1399
1703
1987
2253
2504
2742
2967
0755
1106
1430
1732
2014
2279
2529
2765
2989
11
12
13
14
15
16
17
18
19
20
3010
3032
3054
3075
3096
3118
3139
3160
3181
3201
20
21
22
23
24
25
26
27
28
29
3222
3424
3617
3802
3979
4150
4314
4472
4624
3243
3444
3636
3820
3997
4166
4330
4487
4639
3263
3464
3655
3838
4014
4183
4346
4502
4654
3284
3483
3674
3856
4031
4200
4362
4518
4669
3304
3502
3692
3874
4048
4216
4378
4533
4683
3324
3522
3711
3892
4065
4232
4393
4548
4698
3345
3541
3729
3909
4082
4249
4409
4564
4713
3365
3560
3747
3927
4099
4265
4425
4579
4728
3385
3579
3766
3945
4116
4281
4440
4594
4742
3404
3598
3784
3962
4133
4298
4456
4609
4757
21
22
23
24
25
26
27
28
29
30
4771
4786
4800
4814
4829
4843
4857
4871
4886
4900
30
31
32
33
34
35
36
37
38
39
4914
5052
5185
5315
5441
5563
5682
5798
5911
4928
5065
5198
5328
5453
5575
5694
5809
5922
4942
5079
5211
5340
5465
5587
5705
5821
5933
4955
5092
5224
5353
5478
5599
5717
5832
5944
4969
5105
5237
5366
5490
5611
5729
5843
5955
4983
5119
5250
5378
5502
5623
5740
5855
5966
4997
5132
5263
5391
5515
5635
5752
5866
5977
5011
5145
5276
5403
5527
5647
5763
5877
5988
5024
5159
5289
5416
5539
5658
5775
5888
5999
5038
5172
5302
5428
5551
5670
5786
5899
6010
31
32
33
34
35
36
37
38
39
40
6021-
6031
6042
6053
6064
6075
6085
6096
6107
6117
40
41
42
43
44
45
46
47
48
49
6128
6232
6335
6435
6532
6628
6721
6812
6902
6138
6243
6345
6444
6542
6637
6730
6821
6911
6149
6253
6355
6454
6551
6646
6739
6830
6920
6160
6263
6365
6464
6561
6656
6749
6839
6928
6170
6274
6375
6474
6571
6665
6758
6848
6937
6180
6284
6385
6484
6580
6675
6767
6857
6946
6191
6294
6395
6493
6590
6684
6776
6866
6955
6201
6304
6405
6503
6599
6693
6785
6875
6964
6212
6314
6415
6513
6609
6702
6794
6884
6972
6222
6325
6425
6522
6618
6712
6803
6893
6981
41
42
43
44
45
46
47
48
49
50
6990
6998
7007
7016'
7024
7033
7042
7050
7059
7067
50
LOGARITHMS OP NUMBERS.
169
Four-place Logarithms of Numbers to 1000.
For six-place logarithms of numbers to 10,000, see pp. 137 to 164.
No.
0
1
2
3
4
5
6
7
8
9
No.
50
6990
6998
7007
7016
7024
7033
7042
7050
7059
7067
50
51
52
53
7076
7160
7243
7084
7168
7251
7093
7177
7259
7101
7185
7267
7110
7193
7275
7118
7202
7284
7126
7210
7292
7135
7218
7300
7143
7226
7308
7152
7235
7316
51
52
53
54
55
56
7324
7404
7482
7332
7412
7490
7340
7419
7497
7348
7427
7505
7356
7435
7513
7364
7443
7520
7372
7451
7528
7380
7459
7536
7388
7466
7543
7396
7474
7551
54
55
56
57
58
59
7559
7634
7709
7566
7642
7716
7574
7649
7723
7582
7657
7731
7589
7664
7738
7597
7672
7745
7604
7679
7752
7612
7686
7760
7619
7694
7767
7627
7701
7774
57
58
59
60
7782
7789
7796
7803
7810
7818
7825
7832
7839
7846
60
61
62
63
7853
7924
7993
7860
7931
8000
7868
7938
8007
7875
7945
8014
7882
7952
8021
7889
7959
8028
7896
7966
8035
7903
7973
8041
7910
7980
8048
7917
7987
8055
61
62
63
64
65
66
8062
8129
8195
8069-
8136
8202
8075
8142
8209
8082
8149
8215
8089
8156
8222
8096
8162
8228
8102
8169
8235
8109
8176
8241
8116
8182
8248
8122
8189
8254
64
65
66
67
68
69
8261
8325
8388
8267
8331
8395
8274
8338
8401
8280
8344
8407
8287
8351
8414
8293
8357
8420
8299
8363
8426
8306
8370
8432
8312
8376
8439
8319
8382
8445
67
68
69
70
8451
8457
8463
8470
8476
8482
8488
8494
8500
8506
70
71
72
73
8513
8573
8633
8519
8579
8639
8525
8585
8645
8531
8591
8651
8537
8597
8657
8543
8603
8663
8549
8609
8669
8555
8615
8675
8561
8621
8681
8567
8627
8686
71
72
73
74
75
76
8692
8751
8808
8698
8756
8814
8704
8762
8820
8710
8768
8825
8716
8774
8831
8722
8779
8837
8727
8785
8842
8733
8791
8848
8739
8797
8854
8745
8802
8859
74
75
76
77
78
79
8865
8921
8976
8871
8927
8982
8876
8932
8987
8882
8938
8993
8887
8943
8998
8893
8949
9004
8899
8954
9009
8904
8960
9015
8910
8965
9020
8915
8971
9025
77
78
79
80
9031
9036
9042
9047
9053
9058
9063
9069
9074
9079
80
81
82
83
9085
9138
9191
9090
9143
9196
9096
9149
9201
9101
9154
9206
9106
9159
9212
9112
9165
9217
9117
9170
9222
9122
9175
9227
9128
9180
9232
9133
9186
9238
81
82
83
84
85
86
9243
9294
9345
9248
9299
9350
9253
9304
9355
9258
9309
9360
9263
9315
9365
9269
9320
9370
9274
9325
9375
9279
9330
9380
9284
9335
9385
9289
9340
9390
84
85
86
87
88
89
9395
9445
9494
9400
9450
9499
9405
9455
9504
9410
9460
9509
9415
9465
9513
9420
9469
9518
9425
9474
9523
9430
9479
9528
9435
9484
9533
9440
9489
9538
87
88
89
90
9542
9547
9552
9557
9562
9566
9571
9576
9581
9586
90
91
92
93
9590
9638
9685
9595
9643
9689
9600
9647
9694
9605
9652
9699
9609
9657
9703
9614
9661
9708
9619
9666
9713
9624
9671
9717
9628
9675
9722
9633
9680
9727
91
92
93
94
95
96
9731
9777
9823
9736
9782
9827
9741
9786
9832
9745
9791
9836
9750
9795
9841
9754
9800
9845
9759
9805
9850
9764
9809
9854
9768
9814
9859
9773
9818
9863
94
95
96
97
98
99
9868
9912
9956
9872
9917
9961
9877
9921
9965
9881
9926
9969
9886
9930
9974
9890
9934
9978
9894
9939
9983
9899
9943
9987
9903
9948
9991
9908
9952
9996
97
98
99
100
0000
0004
0009
0013
0017
0022
0026
0030
0035
0039
100
170 NATURAL TRIGONOMETRICAL FUNCTIONS.
NATURAL TRIGONOMETRICAL, FUNCTIONS.
•
M.
Sine.
Co-
Vers.
Cosec.
Tang.
Co tan.
Se-
cant.
Ver.
Sin.
Cosine.
o
0
.00000
1 .0000
Infinite
.00000
Infinite
.0000
.00000
1.0000
1)0
^
15
.00436
.99564
229.18
.00436
229.18
.0000
.00001
.99999
45
30
.00873
.99127
114.59
.00873
114.59
.0000
.00004
.99996
30
45
.01309
.98691
76.397-
.01309
76.390
.0001
.00009
.99991
15
1
0
.01745
.98255
57.299
.01745
57.290
.0001
.00015
.99985
89
0
15
.02181
.97819
45.840.
.02182
45.829
.0002
.00024
.99976
45
30
.02618
.97382
38.202
.02618
38.188
.0003
.00034
.99966
30
45
.03054
.96946
32.746
.03055
32.730
.0005
.00047
.99953
15
2
0
.03490
.96510
28.654
.03492
28.636
.0006
.00061
.99939
88
0
15
.03926
.96074
25.471
.03929
25.452
.0008
.00077
.99923
45
30
.G4362
.95638
22.926
.04366
22.904
.0009
.00095
.99905
30
45
.04798
.95202
20.843
.04803
20.819
.0011
.00115
.99885
15
3
0
.05234
.94766
19.107
.05241
19.081
.0014
.00137
.99863
87
0
15
.05669
.9433 1
17.639
.05678
17.611
.0016
.00161
.99839
45
30
.06105
.93895
16.380
.06116
16.350
.0019
.00187
.9981.3
30
45
.06540
.93460
15.290
.06554
15.257
.0021
.00214
.99786
15
4
0
.06976
.93024
14.336
.06993
14.301
.0024
.00244
.99756
80
0
15
.07411
.92589
13.494
.07431
13.457
.0028
.00275
.99725
45
30
.07846
.92154
12.745
.07870
12.706
.0031
.00308
.99692
30
45
.08281
.91719
12.076
.08309
12.035
.0034
.00343
.99656
15
5
0
.08716
.91284
11.474
.08749
11.430
.0038
.00381
.99619
85
0
15
.09150
.90850
10.929
.09189
10.883
.0042
.00420
.99580
45
30
.09585
.90415
10.433
.09629
10.385
.0046
.00460
.99540
30
45
.10019
.89981
9.9812
.10069
9.9310
.0051
.00503
.99497
15
6
0
.10453
.89547
9.5668
.10510
9.5144
.0055
.00548
.99452
84
0
15
.10887
.89113
9.1855
.10952
9.1309
.0060
.00594
.99406
45
30
.11320
.88680
8.8337
.11393
8.7769
.0065
.00643
.99357
30
45
.11754
.88246
8.5079
.11836
8.4490
.0070
.00693
.99307
15
7
0
.12187
.87813
8.2055
.12278
8.1443
.0075
.00745
.99255
83
0
15
.12620
.87380
7.9240
.12722
7.8606
.0081
.00800
.99200
45
30
.13053
.86947
7.6613
.13165
7.5958
.0086
.00856
.99144
30
45
.13485
.86515
7.4156
.13609
7.3479
.0092
.00913
.99086
15
8
0
.13917
.86083
7.1853
.14054
7.1154
.0098
.00973
.99027
82
0
15
.14349
.85651
6.9690
.14499
6.8969
.0105
.01035
.98965
45
30
.14781
.85219
6.7655
.14945
6.6912
.0111
.01098
.98902
30
45
.15212
.84788
6.5736
.15391
6.4971
.0118
.01164
.98836
15
9
0
.15643
.84357
6.3924
.15838
6.3138
.0125
.01231
.98769
81
0
15
.16074
.83926
6.2211
.16286
6.1402
.0132
.01300
.98700
45
30
.16505
.83495
6.0589
.16734
5.9758
.0139
.01371
.98629
30
45
.16935
.83065
5.9049
.17183
'5.8197
.0147
.01444
.98556
15
10
0
.17365
.82635
5.7588
.17633
5.6713
.0154
.01519
.98481
80
0
15
.17794
.82206
5.6198
.18083
5.5301
.0162
.01596
.98404
45
30
.18224
.81776
5.4874
.18534
5.3955
.0170
.01675
.98325
30
45
.18652
.81348
5.3612
.18986
5.2672
.0179
.01755
.98245
15
11
0
.19081
.80919
5.2408
.19438
5.1446
.0187
.01837
.98163
79
0
15
.19509
.80491
5.1258
.19891
5.0273
.0196
,01921
.98079
45
30
.19937
.80063
5.0158
.20345
4.9152
.0205
.02008
.97992
30
45
.20364
.79636
4.9106
.20800
4.8077
.0214
.02095
.97905
15
13
0
.20791
.79209
4.8097
.21256
4.7046
.0223
.02185
.97815
78
0
15
.21218
.78782
4.7130
21712
4.6057
.0233
.02277
.97723
45
30
.21644
.78356
4.6202
.22169
4.5107
.0243
.02370
.97630
30
45
.22070
.77930
4.5311
.22628
44194
.0253
.02466
.97534
15
13
0
.22495
.77505
4.4454
.23087
4.3315
.0263
.02563
.97437
77
0
15
.22920
.77080
4.3630
.23547
4.2468
.0273
.02662
.97338
45
30
.23345
.76655
4.2837
.24008
4.1653
.0284
.02763
.97237
30
45
.23769
.76231
4.2072
.24470
4.0867
.0295
.02866
.97134
15
14
0
24192
.75808
4.1336
.24933
4.0108
.0306
.02970
.97030
76
0
15
.24615
.75385
4.0625
25397
3.9375
.0317
.03077
.96923
45
30
.25038
.74962
3.9939
.25862
3.8667
.0329
.03185
.96815
30
45
.25460
.74540
3.9277
.26328
3.7983
.0341
.03295
.96705
15
15
0
.25882
.74118
3.8637
.26795
3.7320
1.0353
.03407
.96593
!•>
0
Co-
sine.
Ver.
Sin.
Secant.
Cotan
Tang.
Cosec.
Co-
Vers.
Sine.
0
M;
From 75° to 90° read from bottom of table upwards.
NATURAL TRIGONOMETRICAL FUNCTIONS.
171
•
M.
Sine.
Co-
Vers.
Cosec
Tang
Cotan
Secant
Ver.
Sin.
Cosine
I
15~
~0~
.25882
.74118
3.8637
.26795
3.7320
1.0353
.03407
.96593
75
~
15
.26303
.73697
3.8018
.27263
3.6680
1.0365
.03521
.96479
45
30
.26724
.73276
3.7420
.27732
3.6059
1.0377
.03637
.96363
30
45
.27144
.72856
3.6840
.28203
3.5457
1.C390
.03754
.96246
15
16
0
.27564
.72436
3.6280
.28674
3.4874
1 .0403
.03874
.96126
74
0
15
.27983
.72017
3.5736
.29147
3.4308
1.0416
.03995
.96005
45
30
.28402
.71598
3.5209
.29621
3.3759
1.0429
.04118
.95882
30
45
.28820
.71180
3.4699
.30096
3.3226
1 .0443
.04243
.95757
15
17
0
.29237
.70763
3.4203
.30573
3.2709
1.0457
.04370
.95630
73
0
15
.29654
.70346
3.3722
.31051
3.2205
1.0471
.04498
.95502
45
30
.30070
.69929
3.3255
.31530
3.1716
1 .0485
.04628
.95372
30
45
.30486
69514
3.2801
.32010
3.1240
1.0500
.04760
.95240
15
18
0
.30902
69098
3.2361
.32492
3.0777
1.0515
.04894
.95106
72
0
15
31316
68684
3.1932
.32975
3.0326
1.0530
.05030
.94970
45
30
31730
.68270
3.1515
.33459
2.9887
1.0545
.05168
.94832
30
45
32144
67856
3.1110
.33945
2.9459
1 .0560
.05307
.94693
15
19
0
32557
67443
3.0715
34433
2.9042
1.0576
.05448
.94552
71
0
15
32969
67031
3.0331
.34921
2.8636
1 .0592
.05591
.94409
45
30
33381
66619
2.9957
35412
2.8239
1 .0608
.05736
.94264
30
45
33792
66208
2.9593
35904
2.7852
1 .0625
.05882
.94118
!5
20
0
34202
65798
2.9238
36397
2.7475
1 .0642
.0603 1
.93969
70
0
15
34612
65388
2.8892
36892
2.7106
1 .0659
.06181
.93819
45
30
35021
64979
2.8554
37388
2.6746
1.0676
.06333
.93667
30
45
35429
64571
2.8225
37887
2.6395
1 .0694
,.06486
.93514
1)
21
0
35837
64163
2.7904
38386
2.6051
1.0711
.06642
.93358
69
0
15
36244
63756
2.7591
38888
2.5715
1.0729
.06799
.93201
45
30
36650
63350
2.7285
39391
2.5386
1.0748
.06958
.93042
30
45
37056
62944
2.6986
39896
2.5065
1.0766
.07119
.92881
13
22
0
37461
62539
2.6695
40403
2.4751
1.0785
.07282
.92718
68
0
15
37865
62135
2.6410
40911
2.4443
1 .0804
.07446
.92554
45
30
38268
61732
2.6131
41421
2.4142
1 .0824
.07612
.92388
30
45
38671
61329
2.5859
41933
2.3847
1 .0844
.07780
.92220
15
23
0
39073
60927
2.5593
42447
2.3559
1 .0864
.07950
.92050
67
0
15
39474
60526
2.5333
42963
2.3276
1 .0884
.08121
.91879
45
30
39875
60125
2.5078
43481
2.2998
1 .0904
.08294
.91706
30
45
40275
59725
2.4829
44001
2.2727
1 .0925
.08469
.91531
15
24
0
40674
59326
2.4586
44523
2.2460
1.0946
.08645
.91355
66
0
15
41072
58928
2.4348
45047
2.2199
1.0968
.08824
.91176
45
30
41469
58531
2.4114
45573
2.1943
1 .0989
.09004
.90996
30
45
41866
58134
2.3886
46101
2.1692
1.1011
.09186
.90814
15
25
0
42262
57738
2.3662
46631
2.1445
1.1034
.09369
.90631
65
0
15
42657
57343
2.3443
47163
2.1203
1.1056
.09554
.90446
45
30
43051
56949
2.3228
47697
2.0965
1.1079
.09741
.90259
30
45
43445
56555
2.3018
48234
2.0732
1.1102
.09930
.90070
15
26
0
43837
56163
2.2812
48773
2.0503
1.1126
.10121
.89879
64
0
15
44229
55771
2.2610
49314
2.0278
1.115.0
.10313
.89687
45
30
44620
55380
2.2412
49858
2.0057
1.1174
.10507
.89493
30
45
45010
54990
2.2217
50404
1 .9840
1.1198
.10702
.89298
15
27
0
45399
54601
2.2027
50952
1 .9626
1.1223
.10899
.89101
63
0
15
45787
54213
2.1840
51503
1.9416
1.1248
.11098
88902
45
30
46175
53825
2.1657
52057
1.9210
1.1274
.11299
.88701
30
45
46561
53439
2.1477
52612
1 .9007
1.1300
.11501
.88499
15
23
0
46947
53053
2.1300
53171
1 .8807
1.1326
.11705
.88295
62
0
15
47332
52668
2.1127
53732
1.8611
1.1352
.11911
.88089
45
30
47716
52284
2.0957
54295
1.8418
1.1379
.12118
.87882
30
45
48099
51901
2.0790
54862
1.8228
1.1406
.12327
.87673
15
29
0
48481
51519
2.0627
55431
1 .8040
1.1433
.12538
.87462
61
0
15
48862
51138
2.0466
56003
1.7856
1.1461
.12750
.87250
45
30
49242
50758
2.0308
56577
1.7675
1.1490
.12964
.87036
30
45
49622
.50378
2.0152
57155
1.7496
1.1518
.13180
.86820
15
30
0
50000
.50000
2.0000
57735
1.7320
1.1547
.13397
.86603
60
_0
Co-
sine.
Ver.
Sin.
Se-
cant.
Co tan.
Tang..
Cosec.
Co-
Vers.
Sine.
o
M.
From 60° to 75° read from bottom of table upwards.
172 NATUKAL TRIGONOMETRICAL FUNCTIONS.
o
M.
Sine.
Co-
Vers.
Cosec.
Tang.
Co tan.
Secant.
Ver.
Sin.
Cosine
80~
0
.50000
.50000
2.0000
.57735
.7320
.1547
.13397
.86603
60
0
15
.50377
.49623
.9850
.58318
.7147
.1576
.13616
.86384
45
30
.50754
.49246
.9703
.58904
.6977
.1606
.13837
.86163
30
45
.51129
.48871
.9558
.59494
.6808
.1636
.14059
.85941
15
31
0
.51504
.48496
.9416
.60086
.6643
.1666
.14283
.85717
59
0
15
.51877
.48123
.9276
.60681
.6479
.1697
.14509
.85491
45
30
.52250
.47750
.9139
.61280
.6319
.1728
.14736
.85264
30
45
.52621
.47379
.9004
.61882
.6160
.1760
.14965
.85035
15
33
0
.52992
.47008
.8871
.62487
.6003
.1792
.15195
.84805
58
0
15
.53361
.46639
.8740
.63095
.5849
.1824
.15427
.84573
45
30
.53730
.46270
.8612
.63707
.5697.
.1857
.15661
.84339
30
45
.54097
.45903
.8485
.64322
.5547
.1890
.15896
.84104
15
33
0
.54464
.45536
.8361
.64941
5399
.1924
.16133
.83867
67
0
15
.54829
.45171
.8238
.65563
.5253
.1958
.16371
.83629
45
30
.55194
.44806
.8118
.66188
.5108
.1992
.16611
.83389
30
45
.55557
.44443
.7999
.66818
.4966
.2027
.16853
.83147
15
34
0
.55919
.44081
.7883
.67451
.4826
.2062
.17096
.82904
56
0
15
.56280
.43720
.7768
.68087
.4687
.2098
.17341
.82659
45
30
.56641
.43359
.7655
.68728
.4550
.2134
.17587
.82413
30
45
.57000
.43000
.7544
.69372
.4415
.2171
.17835
.82165
15
35
0
.57358
.42642
.7434
.70021
.4281
.2208
.18085
.81915
55
0
15
.57715
.42285
.7327
.70673
.4150
.2245
.18336
.81664
45
30
.58070
.41930
.7220
.71329
.4019
.2283
.18588
.81412
30
45
.58425
.41575
.7116
.71990
.3891
.2322
.18843
.81157
15
36
0
.58779
.41221
.7013
.72654
.3764
.2361
.19098
.80902
54
0
15
.59131
.40869
.6912
.73323
.3638
.2400
.19356
.80644
45
30
.59482
.40518
.6812
.73996
.3514
.2440
.19614
.80386
30
45
.59832
.40168
.6713
.74673
.3392
.2480
.19875
.80125
15
37
0
.60181
.39819
.6616
.75355
.3270
.2521
.20136
.79864
53
0
15
.60529
.39471
.6521
.76042
.3151
.2563
.20400
.79600
45
30
.60876
.39124
.6427
.76733
.3032
.2605
.20665
.79335
30
45
.61222
.38778
.6334
.77428
.2915
.2647
.20931
.79069
15
38
0
.61566
.38434
.6243
.78129
.2799
.2690
.21199
.78801
52
0
15
.61909
.38091
.6153
78834
.2685
.2734
.21468
.78532
45
30
.62251
.37749
.6064
.79543
.2572
.2778
.21739
.78261
30
45
.62592
.37408
5976
.80258
.2460
2822
.22012
.77988
15
39
0
.62932
.37068
.5890
.80978
.2349
.2868
.22285
.77715
51
0
15
.63271
.36729
.5805
.81703
.2239
.2913
.22561
.77439
45
30
.63608
.36392
.5721
.82434
.2131
.2960
.22833
.77162
30
45
.63944
.36056
.5639
.83169
.2024
.3007
.23116
.76884
15
40
0
.64279
.35721
.5557
.83910
.1918
.3054
.23396
.76604
50
0
15
.64612
.35388
.5477
.84656
.1812
.3102
.23677
.76323
45
30
.64945
.35055
.5398
.85408
.1708
.3151
.23959
.76041
30
45
.65276
.34724
.5320
.86165
.1606
.3200
.24244
.75756
15
41
0
.65606
.34394
.5242
.86929
.1504
.3250
.24529
.75471
49
0
15
.65935
.34065
.5166
.87698
.1403
.3301
.24816
.75184
45
30
.66262
.33738
.5092
.88472
.1303
.3352
.25104
.74896
30
45
.66588
.33412
.5018
.89253
.1204
.3404
.25394
.74606
15
42
0
.66913
.33087
.4945
.90040
.1106
.3456
.25686
.74314
48
0
15
.67237
.32763
.4873
.90834
.1009
.3509
.25978
.74022
45
30
.67559
.32441
.4802
.91633
.0913
.3563
.26272
.73728
30
45
.67880
.32120
.4732
.92439
.0818
.3618
.26568
.73432
15
43
0
.68200
.31800
.4663
.93251
.0724
.3673
.26865
.73135
47
0
15
.68518
.31482
.4595
.94071
.0630
.3729
.27163
.72837
45
30
.68835
.31165
.4527
.94896
.0538
.3786
.27463
.72537
30
45
.69151
.30849
.4461
.95729
.0446
.3843
.27764
.72236
15
44
0
.69466
.30534
.4396
.96569
.0355
.3902
.28066
.71934
46
0
15
.69779
.30221
.4331
.97416
.0265
.3961
.28370
.71630
45
30
.70091
.29909
.4267
.98270
.0176
.4020
.28675
.71325
30
45
.70401
.29599
.4204
.99131
.0088
.4081
.28981
.71019
15
45
0
.70711
.29289
.4142
1 .0000
.0000
.4142
.29289
.70711
45
0
Cosine
Ver.
Sin.
Se-
cant.
Cotan.
Tang.
Cosec.
Co-
Vers.
Sine.
•
M.
From 45° to 60° read from bottom of table upwards.
SPECIFIC GRAVITY.
173
MATERIALS.
THE CHEMICAL ELEMENTS.
Common Elements (42).
•11
«£
12
«£
V
OrC
Name.
|-s
IJ
Name.
1^
fl
Name.
J't?
Al
Sb
Aluminum
Antimony
27.1
120.2
F
Au
Fluorine
Gold
19.
197.2
Pd
P
Palladium
Phosphorus
106.7
31.
As
Arsenic
75.0
H
Hydrogen
1.01
Pt
Platinum
195.2
Ba
Barium
137.4
I
Iodine
126.9
K
Potassium
39.1
Bi
Bismuth
208.0
Ir
Iridium
193.1
Si
Silicon
28.3
B
Boron
11.0
Fe
Iron
55.84
Ag
Silver
107.9
Br
Bromine
79.9
Pb
Lead
207.2
Na
Sodium
23.
Cd
Cadmium
112.4
Li
Lithium
6.94
Sr
Strontium
87.6
Ca
Calcium
40.1
Mg
Magnesium
24.34
S
Sulphur
32.1
C
Carbon
12.
Mn
Manganese
54.9
Sn
Tin
119.
Cl
Chlorine •
35.5
Hg
Mercury
200.6
Ti
Titanium
48.1
Cr
Chromium
52.0
Ni
Nickel
58.7
W
Tungsten
184.0
Co
Cobalt
59.
N
Nitrogen
14.01
Va
Vanadium
51.0
Cu
Copper
63.6
0
Oxygen
16.
Zn 1
Zinc
65.4
The atomic weights of many of the elements vary in the decimal
place as given by different authorities. The above are the most recent
values referred to O = 16 and H = 1.008. When H is taken as 1,
O = 15.879, and the other figures are diminished proportionately.
Rare Elements (37).
Beryllium, Be. Indium, In. Ruthenium, Ru. Thallium, Tl.
Caesium, Cs. Lanthanum, La. Samarium, Sm. Thorium, Th.
Cerium, Ce. Molybdenum, Mo. Scandium, Sc. Uranium, U.
Erbium, Er. Niobium, Nb. Selenium, Se. Ytterbium, Yr.
Gallium, Ga. Osmium, Os. Tantalum, Ta. Yttrium, Y.
Germanium, Ge. Rhodium, R. Tellurium, Te. Zirconium, Zr.
Glucinum, G. Rubidium, Rb. Terbium, Tb.
Elements recently discovered (1895-1900): Argon, A, 39.9; Krypton
Kr, 81.8; Neon, Ne, 20.0; Xenon, X, 128.0; constituents of the atmos-
phere, which contains about 1 per cent by volume of Argon, and very
small quantities of the others. Helium, He, 4.0; Radium, Ra, 225.0;
Gadolinium, Gd, 156.0; Neodymium. Nd, 143.6; Praesodymium, Pr,
110.5; Thulium, Tm, 171.0.
SPECIFIC GRAVITY.
The specific gravity of a substance is its weight as compared with the
weight of an equal bulk of pure water. In the metric system it is the
weight in grammes per cubic centimeter.
To find the specific gravity of a substance;
W = weight of body in air ; w = weight of body submerged in water.
Specific gravity =
W
W -w'
If the substance be lighter than the water, sink it by means of a
heavier substance, and deduct the weight of the heavier substance.
Specific gravity determinations are usually referred to the standard of
the weight of water at 62° F., 62.355 Ib. per cubic foot. Some expert-
174
MATERIALS.
menters have used 60° F. as the standard, and others 32° and 39.1° F.
There is no general agreement.
Given sp. gr. referred to water at 39.1° F., to reduce it to the standard
of 62° F. multiply it by 1.00112.
Given sp. gr. referred to water at 62° F., to find weight per cubic foot
multiply by 62.355. Given weight per cubic foot, to find sp. gr. multiply
by 0.016037. Given sp. gr., to find weight per cubic inch multiply by
Weight and Specific Gravity of Metals.
Specific Gravity.
Range accord-
ing to
several
Authorities.
Specific Grav-
ity. Approx.
Mean Value,
used in
. Calculation
of Weight.
Weight
per
Cubic
Foot,
Ibs.
Weight
per
Cubic
Inch,
Ibs.
2.56 to 2.71
2.67
166.5
00963
Antimony
6.66 to 6.86
6 76
421 6
02439
Bismuth
9.74 to 9.90
9.82
612.4
0.3544
Brass: Copper + Zinc-K
80 20
70 30L .
60 40
50 50*
Cadmium . .
7.8 to 8.6
8.52 to 8.96
8.6 to 8.7
{8.60
8.40
8.36
8.20
8.853
865
536.3
523.8
521.3
511.4
552.
539
0.3103
0.3031
0.3017
0.2959
0.3195
03121
Calcium
1.58
1.58
98.5
0.0570
Ch rom i um
50
5 0
311 8
0 1804
Cobalt
85 to 8 6
8.55
533 1
0 3085
19.245 to 19.361
19.258
1200.9
06949
Copper . . .
8.69 to 8 92
8853
552
03195
Iridium
22.38 to 23.
22.38
1396
08076
Iron Cast
6 85 to 7 48
7218
450
02604
Iron Wrought
7.4 to 7.9
7 70
480
02779
Lead
11.07 to 11.44
11.38
709.7
04106
Manganese ...
7. to 8.
8.
499
02887
Magnesium. . ,
1 .69 to 1 .75
1.75
109.
0.0641
j 32°
Mercury < 60°
1212°
Nickel
13.61
13.58
13.37 to 13.38
8.279 to 8.93
13.61
13.58
13.38
8.8
848.6
846.8
834.4
548 7
0.4908
0.49 1 1
0.4828
03175
Platinum
20.33 to 22.07
21.5
1347.0
07758
0.865
0.865
53.9
0.0312
Silver
10.474 to 10.511
10.505
655.1
03791
Sodium
0.97
0.97
60.5
0.0350
Steel...
7 69* to 7.932t
7.854
4896
02834
Tin
7.291 to 7.409
7.350
458.3
0.2652
Titanium . .
5.3
5.3
330 5
0 1913
17. to 17.6
17.3
1078.7
0.6243
Zinc. . .
6.86 to 7.20
7.00
436.5
0.2526
* Hard and burned.
t Very pure and soft. The sp. gr. decreases as the carbon is increased.
In the first column of figures the lowest are usually those of cast metals,
which are more or less porous; the highest are of metals finely rolled or
drawn into wire.
The weight of 1 cu. cm. of mercury at 0° C. is 13.59545 grams (Thiessen).
Taking atmosphere = 29.92 in. of mercury at 32° F. = 14.6963 Ib. per
sq. in., 1 cu. im of mercury = 0.49117 Ib. Taking water at 0.036085 Ib.
per cu. in. at 62° F., the specific gravity of mercury is at 32° F. 13.611.
SPECIFIC GKAVITY.
175
Specific Gravity of Liquids at 60° F.
A 'r\ AT *•' tV
I 200
Naphtha
0.670 to 0.737
" Nitric
1.54
0.93
" Sulphuric
1 849
" Olive
0.92
Alcohol pure
0.794
" Palm
0.97
" 95 per cent . .
" 50 per cent
0.816
0.934
' Petroleum, crude.
" Rape
0.78 to 1.00
0.92
Ammonia 27 9 per ct
0.891
* Turpentine
0.86
Bromine
2.97
" Whale
0.92
Carbon disulphide
1.26
Tar
1.0
Ether Sulphuric
0 72
Vinegar
1.08
Gasoline
0 660 to 0.670
Water
1.0
Kerosene. .
0.753 to 0.864
Water, Sea ...
1.026 to 1.03
Compression of the following Fluids under a Pressure of 15 Ib.
per Square Inch.
Water 0.00004663 I Ether 0.00006158
Alcohol 0.0000216 | Mercury 0.00000265
The Hydrometer.
The hydrometer is an instrument for determining the density of
liquids. It is usually made of glass, and consists of three parts: (1)
the upper part, a graduated stem or fine tube of uniform diameter;
(2) a bulb, or enlargement of the tube, containing air, and (3) a small
bulb at the bottom, containing shot or mercury which causes the in-
strument to float in a vertical position. The graduations are figures
representing either specific gravities, or the numbers of an arbitrary scale,
as in Baume's, Twaddell's, Beck's, and other hydrometers.
There is a tendency to discard all hydrometers with arbitrary scales
and to use only those which read in terms of the specific gravity
directly.
Baume's Hydrometer and Specific Gravities Compared.
5 Heavy liquids, Sp. gr.
l Light liquids, Sp. gr.
145 -r (145 -deg. Be.)
140 -r (130 + deg. Be.)
Degrees
Baume*
Liquids
Heavier
than
Water,
Sp. Gr.
Liquids
Lighter
than
Water,
Sp. Gr.
Degrees
Baume*
Liquids
Heavier
than
Water,
Sp. Gr
Liquids
Lighter
than
Water,
Sp. Gr.
Degrees
Baume*
Liquids
Heavier
than
Water,
Sp. Gr.
Liquids
Htr
Water,
Sp. Gr.
00
000
190
151
0940
380
355
0833
1.0
.007
20.0
.160
0.933
39.0
.368
0.828
2.0
3.0
.014
021
21.0
22.0
.169
.179
0.927
0.921
40.0
41 0
.381
394
0.824
0 819
4.0
.028
23.0
189
0915
42 0
408
0 814
5.0
.036
24.0
.198
0.909
44.0
.436
0805
6.0
7.0
.043
.051
25.0
26.0
.208
.219
0.903
0.897
46.0
48.0
.465
.495
0.796
0.787
8.0
9.0
.058
.066
27.0
28.0
.229
.239
0.892
0.886
50.0
52.0
.526
.559
0.778
0.769
10.0
11.0
12.0
13.0
14.0
15.0
16.0
17.0
.074
.082
.090
.099
.107
.115
.124
.133
1.000
0.993
0.986
0.979
0.972
0.966
0.959
0.952
29.0
30.0
31.0
32.0
330
34.0
35.0
36.0
.250
.261
.272
.283
.295
.306
1.318
1.330
0.881
0.875
0.870
0.864
0,859
0.854
0.849
0.843
54.0
56.0
58.0
60.0
65.0
70.0
75.0
.593
.629
.667
.706
.813
.933
2.071
0761
0.753
0.745
0.737
0.718
0.700
0.683
18.0
142
0946
370
1 343
0838
170
MATERIALS.
Specific Gravity and Weight of Gases at Atmospheric Pressure
and 33° F.
(For other temperatures and pressures see Physical Properties of Gases.)
Density,
Air => 1.
Density,
H = f.
Grammes
per Litre.
Lbs. per
Cu. Ft.
Cubic Ft.
per Lb.
Air
1 .0000
1 4.444
.2931
0.080728
12388
1.1052
15.963
.4291
0.08921
11 209
Hydrogen, H
0.0692
1 000
0.0895
0.00559
1 78 93 1
Nitrogen, N
0.9701
14.012
.2544
0.07831
12 770
Carbon monoxide, CO .
Carbon dioxide, CO2 . .
Metha ne,marsh-gas, CtU
Ethyl ene C2EU
0.9671
1.5197
0.5530
0.9674
13.968
21.950
7.987
13.973
.2505
.9650
0.7150
.2510
0.07807
0.12267
C.04464
0 07809
12.810
8.152
22.429
12 805
08982
12.973
.1614
0.07251
13.792
0.5889
8.506
0.7615
0 04754
21 036
Water vapor, HtO . . , .
Sulphur dioxide, SO2 . .
0.6218
2.213
8.981
31.965
0.8041
2.862
0.05C20
0.1787
19.922
5.597
Specific Gravity and Weight of Wood.
Specific
Gravity.
rii
Sl|
QjOPn
£
Specific
Gravity,
&4
%as
«•§!
uoPk
Alder
Avge.
0.56 to 0.80 0.68
0.73 to 0.79 0.76
0.60 to 0.84 0.72
0.31 to 0.40 0.35
0.62 to 0.85 0.73
0.56 to 0.74 0.65
0.91 to 1.33 1.12
0.49 to 0.75 0.62
0.61 to 0.72 0.66
0.46 to 0.66 0.56
0.24 0.24
0.41 to 0.66 0.53
0.76 0.76
1.13 to 1.33 1.23
0.55 to 0.78 0.61
0.48 to 0.70 0.59
0.84 to 1 .00 0.92
0.59 0.59
0.36 to 0.41 0.38
0.69 to 0.94 0.77
0.76 0.76
42
47
45 •
22
46
41
70
39
41
35
15
33
47
76
33
37
57
37
24
48
47
Hornbeam. .
Juniper ....
Larch
Lignum vita?
Linden . . .
Locust
Mahogany. .
Maple
Avge.
0.76 0.76
0.56 0.56
0.56 0.56
0.65 to 1.33 1.00
0.604
0.728
0.56 to 1.06 0.81
0.57 to 0.79 0.68
0.56 to 0.90 0.73
0.96 to 1.26 1.11
0.69 to 0.86 0.77
0.73 to 0.75 0.74
0.35 to 0.55 0.45
0.46 to 0.76 0.61
0.38 to 0.58 0.48
0.40 to 0.50 0.45
0.59 to 0.62 0.60
0.66 to 0.98 0.82
0.50 to 0.67 0.58
0.49 to 0.59 0.54
47
35
35
62
37
46
51
42
46
69
48
46
28
38
30
28
37
51
36
34
Ash
Bamboo ....
Beech
Birch
Box
Cedar.
Cherry
Chestnut. . . .
Cork
Mulberry. . .
Oak, Live . .
Oak, White.
Oak, Red . .
Pine, White
" Yellow
Poplar
Spruce
Sycamore . .
Teak
Cypress
Dogwood . . .
Ebony. .
Elm. . .
Fir
Gum
Hackmatack
Hemlock. . . .
Hickory
Holly. .
Walnut
Willow
OP THE USEFUL METALS.
177
Weight and Specific Gravity of Stones, Brick, Cement, etc.
Water = 1.00.)
(Pure
Lb. per Cu. Ft.
Sp. Gr.
Ashes
43
87
1.39
Brick, Soft
100
1 .6
112
1.79
Hard
125
2.0
" Pressed
135
2.16
" Fire
140 to 150
2. 24 to 2 4
Sand-lime
136
2.18
Brickwork in mortar
100
1 6
" cement . . %
112
1.79
Cement, American, natural
28 to 3 2
" Portland
3 . 05 to 3 15
loose
92
" in barrel
115
Clay
120 to 150
' 1 .92 to 2.4
Concrete
120 to 155
1 92 to 2 48
Earth, loose . ...
72 to 80
1 . 1 5 to 1 28
rammed
90 to 110
1 44 to 1 76
Emery .
250
4.
Glass
1 56 to 1 72
25 to 2 75
flint
180 to 196
2.88 to 3 14
Gneiss 1
160 to 170
2. 56 to 2.72
Granite f
Gravel
100 to 120
1.6 to 1.92
Gypsum
130 to 150
2 08 to 2 4
Hornblende
200 to 220
3.2 to 3. 52
Ice .
55 to 57
0 88 to 0 92
Lime, quick, in bulk
50 to 60
0.8 to 0.96
Limestone
140 to 185
2 30 to 2 90
Magnesia, Carbonate
150
2.4
Marble
160 to 180
2 56 to 2 88
Masonry, dry rubble
140 to 160
2.24 to 2.56
" dressed
140 to 180
2 24 to 2 88
Mica
175
2.80
Mortar
90 to 100
44 to 1 6
Mud, soft flowing
104 to 120
.67 to 1 .92
Pitch
72
15
Plaster of Paris
93 to 113
.50 to T.81
Quartz
165
2.64
Sand . . ....
90 to 110
44 to 1 76
" wet
118 to 129
.89 to 2. 07
Sandstone ....
140 to 150
2 24 to 2.4
Slate
170 to 180
2.72 to 2.88
Soapstone ...
166 to 175
2 65 to 2.8
Stone, various
135 to 200
2.16to3.4
" crushed
100
Tile
1 10 to 120
1 76 to 1 92
Trap Rock
1 70 to 200
2.72 to 3. 4
PROPERTIES OF THE USEFUL METALS.
Aluminum, AI. — Atomic weight 27.1. Specific gravity 2.6 to 2.7.
The lightest of all the useful metals except magnesium. A soft, ductile,
malleable metal, of a white color, approaching silver, but with a bluish
cast. Very non-corrosive. Tenacity about one-third that of wrought
iron. Formerly a rare metal, but since 1890 its production and use
have greatly increased on account of the discovery of cheap processes
for reducing it from the ore. Melts at 1215° F. For further description
see Aluminum, under Strength of Materials, page 380.
Antimony (Stibium), Sb. — At. wt. 120.2 Sp. gr. 6.7 to 6.8. A
brittle metal of a bluish-white color and highly crystaline or laminated
structure. Melts at 842° F. Heated in the open air it burns with a
178 MATERIALS.
bluish-white flame. Its chief use is for the manufacture of certain alloys, j
as type-metal (antimony 1, lead 4), britannia (antimony 1, tin 9), and 4
various anti-friction metals (see Alloys). Cubical expansion by heat 3
from 32° to 212° F., 0.0070. Specific heat 0.050.
Bismuth, Bi. — At. wt. 208.5. Bismuth is of a peculiar light reddish I
color, highly crystalline, and so brittle that it can readily be pulverized, j
It melts at 510° F., and boils at about 2300° F. Sp. gr. 9.823 at 54° F., ]
and 10.055 just above the melting-point. Specific heat about 0.0301 at j
ordinary temperatures. Coefficient of cubical expansion from 32° to i
212°, 0.0040. Conductivity for heat about 1/56 and for electricity only .]
about i/so of that of silver. Its tensile strength is about 6400 IDS. per |
square inch. Bismuth expands in cooling, and Tribe has shown that }
this expansion does not take place until after solidification. Bismuth is \
the most diamagnetic element known, a sphere of it being repelled by a ;
strong magnet.
Cadmium, Cd. — At. wt. 112.4. Sp. gr. 8.6 to 8.7. A bluish-white
metal, lustrous, with a fibrous fracture. Melts below 500° F. and vola-
tilizes at about 680° F. It is used as an ingredient, in some fusible alloys
with lead, tin, and bismuth. Cubical expansion from 32° to 212° F., •
0.0094.
Copper, Cu. — At. wt. 63.6. Sp. gr. 8.81 to 8.95. Fuses at about ;
1930^ F. Distinguished from all other metals by its reddish color. Very
ductile and malleable, and its tenacity is next to iron. Tensile strength
20,000 to 30,000 Ibs. per square inch. Heat conductivity 73.6% of that i
of silver, and superior to that of other metals. Electric conductivity
equal to that of gold and silver. Expansion by heat from 32° to 212° F.,
0.0051 of its volume. Specific heat 0.093. (See Copper under Strength
of Materials; also Alloys.)
Gold (Aurum), Au. — At. wt. 197.2. Sp. gr., when pure and pressed
in a die, 19.34. Melts at about 1915° F. The most malleable and duc-
tile of all metals. One ounce Troy may be beaten so as to cover 160 sq.
ft. of surface. The average thickness of gold-leaf is 1/282000 of an inch, i
or 100 sq. ft. per ounce. One grain may be drawn into a wire 500 ft. in
length. The ductility is destroyed by the presence of 1/2000 part of lead,
bismuth, or antimony. Gold is hardened by the addition of silver or of
copper. U. S. gold coin is 90 parts gold and 10 parts alloy, which is
chiefly copper with a little silver. By jewelers the fineness of gold is
expressed in carats, pure gold being 24 carats, three-fourths fine 18
carats, etc.
Iridium, Ir. — Iridium is one of the rarer metals. It has a white
lustre, resembling that of steel; its hardness is about equal to that of the
ruby; in the C9ld it is quite brittle, but at white heat it is somewhat
malleable. It is one of the heaviest of metals, having a specific gravity
of 22.38. It is extremely infusible and almost absolutely inoxidizable.
For uses of iridium, methods of manufacturing it, etc., see paper by
W. L. Dudley on the "Iridium Industry," Trans. A. I. M. E., 1884.
Iron (Ferrum),Fe. — At. wt. 55.9. Sp. gr.: Cast, 6.85 to 7.48; Wrought,
7.4 to 7.9. Pure iron is extremely infusible, its melting point being above
3000° F., but its fusibility increases with the addition of carbon, cast
iron fusing ab9ut 2500° F. Conductivity for heat 11.9, and for electricity
12 to 14.8, silver being 100. Expansion in bulk by heat: cast iron
0.0033, and wrought iron 0.0035, from 32° to 212° F. Specific, heat:
cast iron 0.1298, wrought iron 0.1138, steel 0.1165. Cast iron exposed
to continued heat becomes permanently expanded 1 1/2 to 3 per cent of its
length. Grate-bars should therefore be allowed about 4 per cent play.
(For other properties see Iron and Steel under Strength of Materials.)
Lead (Plumbum), Pb. — At. wt 206.9. Sp. gr. 11.07 to 11.44 by dif-
ferent authorities. Melts at about 625° F., softens and becomes pasty
at about 617° F. If broken by a sudden blow when just below the
melting-point it is quite brittle and the fracture appears crystalline.
Lead is very malleable and ductile, but its tenacity is such that it can
be drawn into wire with great difficulty. Tensile strength, 1600 to
2400 Ibs. per square inch. Its elasticity is very low, and the metal
flows under very slight strain. Lead dissolves to some extent in pure
water, but water containing carbonates or sulphates forms over vt »
film of insoluble salt which prevents further action.
PROPERTIES OF THE USEFUL METALS. 179
Magnesium, Mg. — At. wt. 24.36. Sp. gr. 1.69 to 1.75. Silver-white,
brilliant, malleable, and ductile. It is one of the lightest of metals,
weighing only about tvyo thirds as much as aluminum. In the form of
filings, wire, 9r thin ribbons it is highly combustible, burning with a
light of dazzling brilliancy, useful for signal-lights and for flash-lights
for photographers. It is nearly non-corrosive, a thin film of carbonate
of magnesia forming on exposure to damp air, which protects it from
further corrosion. It may be alloyed with aluminum, 5 per cent Mg
added to Al giving about as much increase of strength and hardness as
10 per cent of copper. Cubical expansion by heat 0.0083, from 32° to
212° F. Melts at 1200° F. Specific heat 0.25.
Manganese, Mn. — At. wt. 55. Sp. gr. 7 to 8. The pure metal is not
used in the arts, but alloys of manganese and iron, called spiegeleisen
when containing below 25 per cent of manganese, and ferro-manganese
when containing from 25 to 90 per cent, are used in the manufacture of
steel. Metallic manganese, when alloyed with iron, oxidizes rapidly in
the air, and its function in steel manufacture is to remove the oxygen
from the bath of steel whether it exists as oxide of iron or as occluded
gas.
Mercury (Hydrargyrum), Hg. — At. wt. 199.8. A silver-white metal,
liquid at temperatures above — 39° F., and boils at 680° F. Unchange-
able as gold, silver, and platinum in the atmosphere at ordinary tem-
peratures, but oxidizes to the red oxide when near its boiling-point.
Sp. gr.: when liquid 13.58 to 13.59, when frozen 14.4 to 14.5. Easily
tarnished by sulphur fumes, also by dust, from which it may be freed
by straining through a cloth. No metal except iron or platinum should
be allowed to touch mercury. The smallest portions of tin, lead, zinc,
and even copper to a less extent, cause it to tarnish and lose its perfect
liquidity. Coefficient of cubical expansion from 32° to 212° F. 0.0182;
per deg. 0.000101.
Nickel, Ni. — At. wt. 58.7. Sp. gr. 8.27 to 8.93. A silvery-white
metal with a strong lustre, not tarnishing on exposure to the air. Duc-
tile, hard, and as tenacious as iron. It is attracted to the magnet and
may be made magnetic like iron. Nickel is very difficult of fusion, melt-
ing at about 3000° F. Chiefly used in alloys with copper, as german-
silver, nickel-silver, etc., and also in the manufacture of steel to increase
its hardness and strength, also for nickel-plating. Cubical expansion
from 32° to 212° F., 0.0038. Specific heat 0.109.
Platinum, Pt. — At. wt. 194X A whitish steel-gray metal, malleable,
very ductile, and as unalterable by ordinary agencies as gold. When
fused and refined it is as soft as copper. Sp. gr. 21.15. It is fusible only
by the oxyhydrogen blowpipe or in strong electric currents. When com-
bined with iridium it forms an alloy of great hardness, which has been
used for gun- vents and for standard weights and measures. The most
important uses of platinum in the arts are for vessels for chemical labo-
ratories and manufactories, and for the connecting wires in incandescent
electric lamps and for electrical contact points. Cubical expansion from
32° to 212° F., 0.0027, less than that of any other metal except the rare
metals, and almost the same as glass.
Silver (Argentum), Ag. — At. wt. 107.9. Sp. gr. 10.1 to 11.1, accord-
ing to condition and purity. It is the whitest of the metals, very malle-
able and ductile, and in hardness intermediate between gold and copper.
Melts at about 1750° F. Specific heat 0.056. Cubical expansion from
32° to 212° F., 0.0058. As a conductor of electricity it is equal to copper.
As a conductor of heat it is superior to all other metals.
Tin (Stannum), Sn. — At. wt. 119. Sp. gr. 7.293. White, lustrous,
soft, malleable, of little strength, tenacity about 3500 Ibs. per square
inch. Fuses at 442° F. Not sensibly volatile when melted at ordinary
heats. Heat conductivity 14.5, electric conductivity 12.4; silver being
100 in each case. Expansion of volume by heat 0.0069 from 32° to 212° F.
Specific heat 0.055. Its chief uses are for coating of sheet-iron (called
tin plate) and for making alloys with copper and other metals.
Zinc, Zn.— At. wt. 65.4. Sp. gr. 7.14. Melts at 780° F. Volatilizes
and burns in the air when melted, with bluish-white fumes of zinc oxide.
It is ductile and malleable, but to a much less extent than copper, and
180
MATERIALS.
its tenacity, about 5000 to 6000 Ibs. per square inch, is about one tenth
that of wrought iron. It is practically non-corrosive in the atmosphere,
a thin film of carbonate of zinc forming upon it. Cubical expansion
between 32° and 212° F., 0.0088. Specific heat 0.096. Electric conduc-
tivity 29, heat conductivity 36, silver being 100. Its principal uses are
for coating iron surfaces, called "galvanizing," and for making brass and
other alloys.
Table Showing the Order of
Tenacity. Infusibility.
Iron Platinum
Copper Iron
Aluminum Copper
Platinum Gold
Silver Silver
Zinc Aluminum
Gold Zinc
Tin Lead
Lead Tin
MEASURES AND WEIGHTS OF VARIOUS MATERIALS
(APPROXIMATE).
Malleability.
Ductility.
Gold
Platinum
Silver
Silver
Aluminum
Iron
Copper
Tin
Copper
Gold
Lead
Aluminum
Zinc
Zinc
Platinum
Tin
Iron
Lead
Brickwork. — Brickwork is estimated
various thicknesses of wall runs as follows:
by the thousand, and for
8i/4-in. wall, or 1 brick in thickness, 14 bricks per superficial foot.
123/4 " •• 11/2" 21 "
17 " " " 9 " " " Oft " " " «•
17
2U/2
28
35
An ordinary brick measures about 81/4X4 X 2 inches, which is equal
to 66 cubic inches, or 26.2 bricks to a cubic foot. The average weight is
4 1/2 Ibs.
Fuel. — A bushel of bituminous coal weighs 76 pounds and contains
2688 cubic inches = 1.554 cubic feet. 29.47 bushels = 1 gross ton.
One acre of bituminous coal contains 1600 tons of 2240 pounds per
foot of thickness of coal worked. 15 to 25 per cent must be deducted for
waste in mining.
41 to 45 cubic feet bituminous coal when broken down = 1 ton, 2240 Ibs.
34 t<
123
70.9
1 cu
1
1
a
i
i
3 41
bic fo
' anthracite prepared for market . .
' of charcoal
. = 1 ton, 2240 Ibs.
= 1 ton 2240 Ibs
" " " coke .
. = 1 ton, 2240 Ibs
ot of anthracite coal
= 55 to 66 Ibs
" bituminous coal . . .
«= 50 to 55 Ibs
Cumberland (semi-bituminous) coal. . . .
Cannel coal .
= 53 Ibs.
= 50 3 Ibs
Charcoal (hardwood)
= 18.5 Ibs.
" (nine) . .
= 18 Ibs.
A bushel of coke weighs 40 pounds (35 to 42 pounds).
A bushel of charcoal. - — In 1881 the American Charcoal-Iron Work-
ers' Association adopted for use in its official publications for the stand-
ard bushel of charcoal 2748 cubic inches, or 20 pounds. A ton of char-
coal is to be taken at 2000 pounds. This figure of 20 pounds to the
bushel was taken as a fair average of different bushels used throughout
the country, and it has since been established by law in some States.
Cement. — Portland, per bbl. net, 376 Ibs., per bag, net 94 Ibs.
Natural, per bbl. net, 282 Ibs., per bag net 94 Ibs.
Lime. — A struck bushel 72 to 75 Ibs.
Grain. — A struck bushel of wheat = 60 Ibs.; of corn = 56 Ibs.; of
oats = 30 Ibs.
Salt. — A struck bushel of salt, coarse, Syracuse, N. Y. = 56 Ibs.;
Turk's Island = 76 to 80 Ibs.
MEASUKES AND WEIGHTS OF VARIOUS MATERIALS. 181
Ores, Earths, etc.
13 cubic feet of ordinary gold or silver ore, in mine = 1 ton = 2000 Ibs.
20 " broken quartz =1 ton = 2000 Ibs.
18 feet of gravel in bank =1 ton.
27 cubic feet of gravel when dry =1 ton.
25 " sand
18 " earth in bank
27 " earth when dry
17 " clay
Except where otherwise stated, a ton = 2240 Ibs.
WEIGHTS OF LOGS, LUMBER, ETC.
Weight of Green Logs to Scale 1000 Feet, Board Measure.
Yellow pine (Southern) 8,000 to 10,0001bs.
1 ton.
1 ton.
= 1 ton.
= 1 ton.
,
Norway pine (Michigan) 7,000 to 8,000
WhitP ninp nVTirhiffaTi^ I off of stumP 7'000 to 7,000
(Micnigan) j QUt of water 7 000 to g 000
White pine (Pennsylvania), bark off 5,000 to 6,000
Hemlock (Pennsylvania), bark off . 6,000 to 7,000
Four acres of water are required to store 1,000,000 feet of logs.
Weight of 1000 Feet of Lumber, Board Measure.
Yellow or Norway pine Dry, 3,000 Ibs. Green, 5,000 Ibs.
White pine ' 2,500 " 4,000 "
Weight of 1 Cord of Seasoned Wood, 128 Cu. Ft. per Cord, Ibs.
Hickory or sugar maple. . . . 4,500
White oak 3,850
Beech, red oak or black oak . 3,250
Poplar, chestnut or elm. . . 2,350
Pine (white or Norway).. . 2,000
Hemlock bark, dry 2,200
WEIGHT OF RODS, BARS, PLATES, TUBES, AND SPHERES
OF DIFFERENT MATERIALS.
Notation: b = breadth, t = thickness, s = side of square, D = ex-
ternal diameter, d = internal diameter, all in inches.
Sectional areas: of square bars = s2; of flat bars = W; of round rods
= 0.7854 Z>2; of tubes •= 0.7854 (D2 - rf2) = 3.1416 (Dt -Z2).
Volume of 1 foot in length: of square bars = 12s2; of flat bars = 12bt;
of round bars = 9.4248D2; of tubes = 9.4248 (D2 - d2) = 37.699
(Dt -22), in cu. in.
Weight per foot length = volume + weight per cubic inch of mate-
rial. Weight of a sphere = diam.3 X 0.5236 X weight per cubic inch.
3
$&
r.g
.
4
.
d
u .
*? rX
[Vj f^.O
fe PQ
U .
j> -fj iH
JV 'tf »
Material.
P|
5 >
^
fctrf
g|
If fa
y •
"gjj
JJ
ge
g-w
+i«*H ^
i*s
i*
I^-S
£-3«
4J a
82 X
btX
D*X
D*X
Cast iron
7.218
450.
37.5
31/8
31/8
0.2604
15-16
2.454
0.1363
Wrought iron. .
7.7
480.
40.
31/3
31/3
.2779
1.
2.618
.1455
Steel
7.854
489.6
40.8
3.4
3.4
.2833
1.02
2.670
.1484
Copper & Bronze
(copper and tin)
8.855
552.
46.
3.833
3.833
.3195
1.15
3.011
.1673
Brass ( £ zm^*
8.393
523.2
43.6
3.633
3.633
«3029
1.09
2.854
.1586
Monel metal, rolled
8.95
558.
46.5
3.87
3.87
.323
1.16
3.043
.1691
Lead...
1 1.38
709.6
59.1
493
493
.4106
1 48
3.870
.2150
Aluminum
2.67
166.5
13.9
1.16
1.16
.0963
0.347
0.908
.0504
Glass.
2.62
163.4
13.6
1.13
1 13
.0945
0.34
0.891
.0495
Pine wood, dry
0.481
30.0
2.5
0.21
0.21
.0174
1-16
0.164
.0091
Weight per cylindrical in., 1 in. long, = coefficient of D2 in next to
last column -7- 12.
182 MATERIALS.
FOP tubes use the coefficient of D2 in next to last column, as for rods,
and multiply it into (D2 — d2) ; or multiply it by 4 (Dt - 22) .
For hollow spheres use the coefficient of D3 in the last column and
multiply it into (D3 - d3).
For hexagons multiply the weight of square bars by 0.866 (short
diam. of hexagon = side of square). For octagons multiply by 0.8284.
COMMERCIAL SIZES OF MERCHANT IRON AND STEEL
BARS.
Steel Bars.
Flats, Square Edge. — s/g to 3 in. wide, by any thickness from
1/8 in. up to width; 3 to 5 in. wide by any thickness 1/4 t9 3 in.
inclusive; 5 to 7 in. wide, by any thickness, 1/4 to 2 in. inclusive.
Flats, Band Edge. — Thicknesses are in B. W. G., 3/8 in. wide by
No. 18 to No. 4. 7/i6 in. by No. 19 to No. 4. 1/2 in. by No. 22 to No.
4. 9/i6 to 1 in. by No. 23 to No. 4. 1 1/16 to 2 in. by No. 22 to No. 4.
2Vi6 to 3 in. by No. 21 to No. 1. 39/16 to 4 in. by No. 19 to No. 1.
4Vi6 to 41/2 in. by No. 18 to No. 1. 49/i6 to 5 Vie in. by No. 17 to No. 1.
5 i/s to 6 3/4 in. by No. 16 to No. 1. 7 in., 7 1/4 in., 7 1/2 in., 7 5/8 in., 7 3/4 in.,
7 7/8 in., 8 in., 81/4 in., 81/2 in., 85/8 in., each by No. 14 to No. 1. 95/8
in. by No. 12 to No. 1.
Squares. — Widths across faces: 3/ie to 2 in., advancing by 1/64 in.;
21/32 to 3 1/2 in., advancing by 1/32 in.; 3 9/ie to 51/2 in., advancing by
Vie in.
Round-cornered Squares. — 1/4 to 3/4 in., across faces, advancing
by 1/64 in.
Rounds. — Diameters: 7/32 to 13/4 in., inclusive, advancing by 1/64
in.; 1 25/32 in. to 31/2 in. inclusive, advancing by 1/32; 3 9/ie to 7 in.,
inclusive, advancing by Vie in.
Half Rounds. — Diameters: 5/16 to 7/s in., inclusive, advancing by
1/64 in. ; 15/16 to 1 3/4 in . , advancing by Vie in. ; 2 in. ; 2 1/2 in. ; 3 in.
.Hexagons. — Width across faces: 1/4 to 13/ie in., inclusive, advanc-
ing by 1/32 in.; 1 1/4 in. to 3 Vie in., advancing by Vie in.
Iron Bars.
Round. — 3/i6 to 1 7/8 in., advancing by Vs2 in.; 1 15/i6 to 2 3/4 in., advancing
by Vie in.; 2 7/8 to 3 3/4 in., advancing by Vs in.; 4 to 5 in., advancing by
1/4 in.
Squares. — Vie to 5/s in., advancing by 1/32 in.; n/ie in. to 1 in., advancing
by Vie in.; 1 Vg in. to 2 1/2 in., advancing by Vs in.; 2 3/4 in. to 4 */2 in., ad-
vancing by 1/4 in-
Half Rounds.— -8/g, 7/16, l/2, 5/8, 11/16, 3/4, 7/8f 1, 1 l/g, 1 \j£\ 3/g, 1 l/2,
1 3/4, 2 in.
OvalS.— V2 X V4, 5/8 X 5/16, 3/4 X 3/8 and 7/8 X 7/16 in.
Half Ovals.— 1/2 X Vie, Vs X Vie, 3/4 X Vie, Vs X Vie, 1 X Vie,
3/4 X V4, Vs X i/4, 1 X i/4, 1 Vs X 1/4. 1 X Vie, 1 Vs X Vie, 1 V4 X Vie,
1 X Vs, 1 Vs X Vs, 1 V4 X Vs, 1 V2 X Vs, 1 3/4 X V* 2 X Vs in.
Flats.— 1/2 X Vie to Vs in.; Vs X Vie to 1/2 in.; 3/4 X Vie to Vs in.;
Vs X Vie to 3/4 in.; 1 X Vie to Vs in.; 1 Vie X i/4 to Vs in-; 1 Vs X Vie to
1 in.; 1 1/4 X Vie to 1 in.; 1 3/s X Vie to 1 Vs in.; 1 1/2 X Vie to 1 1/4 in.;
1 Vs X V4 to 1 1/2 in.; 1 3/4 X Vie to 1 1/2 in.; 1 Vs X I/A to 1 1/2 in.; 2 X Vie
to 1 3/4 in.; 2 Vs X V4 to 1 1/4 in.; 2 i/4 X Vie to 2 in.; 2 Vs X V4 to 1 3/4 in.;
2V2 XVie to 2V4 in.; 2 Vs X V4 to 2 i/4 in.; 2 3/4 X Vie to 2 1/2 in.;
2 7/8 X V8 to 1/2 in.; 2 Vs X Vs to 2 i/4 in.; 3 X Vie to 2 3/4 in.; 3 Vs X 1 V2
to 2 Vs in.; 3 1/4 X */4 to 2 3/4 in.; 3 1/2 X Vie to 2 Vs in.; 3 3/4 X V4 to 3 in.;
•4 X V4 to 3 in.; 4 1/4 X V4 to 2 in.; 4 1/2 X J/4 to 2 1/2 in.; 4 3/4 X V4 to 2
in.; 5 X x/4 to 2 3/4 in.; 5 1/2 X V4 to 2 in.; 6 X V4 to 2 in.; 6 1/2 X V4 to
1 in.; 7 X !/4 to 2 in.; 7 1/2 X x/4 to 1 in.; 8 X V4 to 2 in.
Round Edge Flats. — 1 to 2 in. wide by V4 to 1 V4 in. thick; 2 1/4 to
4 1/2 in. wide by 3/s to 1 1/4 in. thick.
WEIGHT OP IRON AND STEEL SHEETS.
183
WEIGHT OF IRON AND STEEI, SHEETS.
Weights in Pounds per Square Foot.
(For weights by the Decimal Gauge, see page 33.)
Thickness by Birmingham Gauge.
U. S. Standard Gauge, 1893. (See
p. 32.)
No. of
Gauge.
Thick-
ness in
Inches.
Iron.
Steel.
No. of
Gauge.
Thick-
ness, In.
(Approx.)
Iron.
Steel.
0000
0.454
18.16
18.52
0000000
0.5
20.
20.40
000
.425
17.00
17.34
000000
0.4688
18.75
19.125
00
.38
15.20
15.50
00000
0.4375
17.50
17.85
0
.34
13.60
13.87
0000
0.4063
16.25
16.575
1
.3
12.00
12.24
000
0.375
15.
15. 3C
2
.284
11.36
11.59
00
0.3438
13.75
14.025
3
.259
10.36
10.57
0
0.3125
12.50
12.75
4
.238
9.52
9.71
1
0.2813
11.25
11.475
5
.22
8.80
8.98
2
0.2656
10.625
10.837
6
.203
8.12
8.28
3
0.25
10.
10.20
7
.18 '
7.20
7.34
4
0.2344
9.375
9.562
8
.165
6.60
6.73
5
0.2188
8.75
8.925
9
.148
5.92
6.04
6
0.2031
8.125
8.287
10
.134
5.36
5.47
7
0.1875
7.5
7.65
11
.12
4.80
4.90
8
0.1719
6.875
7.012
12
.109
4.36
4.45
9
0.1563
6.25
6.375
13
.095
3.80
3.88
10
0.1405
5.625
5.737
14
.083
3.32
3.39
11
0.125
5.
5.10
15
.072
2.88
2.94
12
0.1094
4.375
4.462
16
.065
2.60
2.65
13
0.0938
3.75
3.825
17
.058
2.32
2.37
14
0.0781
3.125
3.187
18
.049
.96
2.00
15
0.0703
2.8125
2.869
19
.042
.68
1.71
16
0.0625
2.5
2.55
20
.035
.40
1.43
17
0.0563
2.25
2.295
21
.032
.28
1.31
18
0.05
2.
2.04
22
.028
.12
1.14
19
0.0438
.75
.785
23
.025
.00
1.02
20
0.0375
.50
.53
24
.022
.88
.898
21
0.0344
.375
.402
25
.02
.80
.816
22
0.0312
.25
.275
26
.018
.72
.734
23
0.0281
.125
.147
27
.016
.64
.653
24
0.025
.02
28
.014
.56
.571
25
0.0219
0^875
0.892
29
.013
.52
.530
26
0 0188
0.75
0.765
30
.012
.48
.490
27
0.0172
0.6875
0.701
31
.01
.40
.408
28
0.0156
0.625
0.637
32
.009
.36
.367
29
0.0141
0.5625
0.574
33
.008
.32
.326
30
0.0125
0.5
0.51
34
.007
.28
.286
31
0.0109
0.4375
0.446
35
.005
.20
.204
32
0.0102
0.40625
0.414
36
.004
.16
.163
33
0.0094
0.375
0.382
34
0.0086
0.34375
0.351
35
0.0078
0.3125
0.319
36
0.0070
0.28125
0.287
37
0.0066
0.26562
0.271
38
0.0063
0.25
0.255
Iron. Steel.
Specific gravity . . 7.7 7.854
489.6
Weight per cubic inch 0.2778 0.2833
As there are many gauges in use differing from each other, and even the
thicknesses of a certain specified gauge, as the Birmingham, are not assumed
the same by all manufacturers, orders for sheets and wires should always
state the weight per square foot, or the thickness in thousandths of an inch.
184
MATERIALS.
WEIGHTS OF SQUARE AND ROUND BARS OP WROUGHT
IRON IN POUNDS PER LINEAL FOOT.
Iron weighing 480 Ib. per cubic foot. For steel add 2 per cent.
Thickness or
Diameter
in Inches.
2l?
Sgj
*&
°ii
!§e^
£J!
Thickness or
Diameter
in Inches.
*H e8 M
5Ǥ
•ajM
'8 3^
*Jt
Weight of
Round Bar
1 Ft. Long.
Thickness or
Diameter
in Inches.
!lf
»IJ
II!
Weight of
Round Bar I
1 Ft. Long. [
0
H/16
24.08
18.91
3/8
96.30
75.64
Vl6
0.013
0.010
3/4
25.21
19.80
7/16
08.55
77.40
VS
.052
.041
13/16
26.37
20.71
1/2
100.8
79.19
3/16
.117
.092
7/8
27.55
21.64
/16
103.1
81.00
1/4
.208
.164
15/16
28.76
22.59
5/8
105.5
82.83
5/16
.326
.256
3
30.00
23.56
H/16
107.8
84 69
3/8
.469
.368
1/16
31.26
24.55
3/4
110.2
86.56
7/16
.638
.501
1/8
32.55
25.57
13/16
112.6
88.45
>/2
.833
.654
3/16
33.87
26.60
7/8
115.1
9036
9/16
1.055
.828
1/4
35.21
27.65
15/16
117.5
92.29
5/8
1.302
1.023
5/16
36.58
28.73
6
120.0
94.25
H/16
1.576
1.237
3/8
37.97
29.82
1/8
125.1
98.22
3/4
1.875
1.473
7/16
39.39
30.94
1/4
130.2
102.3
13/16
2.201
1.728
1/2
40.83
32.07
3/8
135.5
106.4
7/8
2.552
2.004
9/16
42.30
33.23
V2
140.8
110.6
15/16
2.930
2.301
5/8
43.80
34.40
5/8
146.3
114.9
1
3.333
2.618
H/16
45.33
35.60
3/4
151.9
119.3
Vl6
3.763
2.955
3/4
46.88
36.82
7/8
157*6
123.7
1/8
4.219
3.313
13/16
48.45
38.05
163.3
128.3
3/16
4.701
3.692
7/8
50.05
39.31
1/8
169.2
132.9
1/4
5.208
4.091
15/16
51.68
40.59
1/4
175.2
137.6
5/16
5.742
4.510
4
53.33
41.89
3/8
181.3
1424
3/8
6.302
4.950
1/16
55.01
43.21
1/2
187 5
147.3
7/16
6.888
5.410
1/8
56.72
44.55
5/8
193.8
152.2
1/2
7.500
5.890
3/16
58.45
45.91
3/4
200.2
157.2
9/16
8.138
6.392
1/4
60.21
47.29
7/8
206.7
162.4
5/8
8.802
6.913
5/16
61.99
48.69
213.3
167.6
H/16
9.492
7.455
3/8
63.80
50.11
1/4
226.9
178.2
3/4
10.21
8.018
7/16
65.64
51.55
1/2
240.8
189.2
13/16
10.95
8.601
V2
67.50
53.01
3/4
255.2
200.4
7/8
11.72
9.204
9/16
69.39
54.50
9
270.0
212.1
15/16
12.51
9.828
5/8
.71.30
56.00
1/4
285.2
224.0
2
13.33
10.47
U/16
73.24
57.52
1/9
300.8
236.3
1/16
14.18
11.14
3/4
75.21
59.07
3/4
316.9
248.9
1/8
15.05
11.82
13/16
77.20
60.63
10
333.3
261.8
3/16
15.95
12.53
7/8
79.22
62.22
1/4
350.2
275.1
1/4
16.88
13.25
15/16
81.26
63.82
1/9
367.5
288.6
5/16
17.83
14.00
5
83.33
65.45
3/4
385.2
302.5
3/8
18.80
14.77
Vl6
85.43
67.10
11
403 3
3168
7/16
1980
15.55
1/8
87.55
68.76
1/4
421.9
331.3
1/2
20.83
16.36
3/16
89.70
70.45
1/2
440.8
346.2
9/16
21.89
17.19
1/4
91.88
72.16
3/4
460.2
361.4
5/8
22.97
18.04
5/16
94.08
73.89
12
480.
377.
WEIGHT OF STEEL BARS.
185
WEIGHT OP SQUARE AND ROUND STEEL BARS PER LINEAL
FOOT. (Steel Weighing 489.6 Ib. per cu. ft.)
Thickness or
Diameter
in Inches.
Weight of
Square Bar
1 Ft. Long.
Weight of
Round Bar
1 Ft. Long.
Thickness or
Diameter
in Inches.
Weight of
Square Bar
1 Ft. Long.
°«*e
•s s
Sl%
!§£
^«-
Thickness or
Diameter
in Inches.
Weight of
Square Bar
1 Ft. Long.
Weight of
Round Bar
1 Ft. Long.
0
H/16
24.56
19.29
3/8
98.23
77.15
1/16
0.013
0.010
3/4
25.71
20.20
7/16
100.5
78.95
1/8
.053
.042
13/16
26.90
21.12
1/2
102.8
80.77
3/16
.119
.094
7/8
28.10
22.07
9/16
105.2
82.62
V4
.212
.167
15/16
29.34
23.03
5/8
107.6
84.49
5/16
.333
.261
3
30.60
24.03
U/ifl
110.0
86.38
3/8
.478
.375
1/16
31 .89
25.04
3/4
112.4
88.29
7/16
.651
.511
1/8
33.20
26.08
13/16
114.9
90.22
1/2
.850
.667
3/16
34.55
27.13
7/8
117.4
92.17
9/16
1.076
.845
1/4
35.91
28.20
15/16
119.9
94.14
5/8
1.328
1 .043
5/16
37.31
29.30
6
122.4
96.14
H/16
1.608
1.262
3/8
38.73
30.42
1/8
127.6
100.2
3/4
1 .913
1 .502
7/16
40.18
31 .56
1/4
132.8
104.3
13/16
2.245
1.763
1/2
41 .65
32.71
3/8
138.2
108.5
7/8
2.603
2.044
9/16
43.15
33.89
1/2
143.6
112.8
15/16
2.989
2.347
5/8
44.68
35.09
5/8
149.2
117.2
1
3.400
2.670
U/16
46.24
36.31
3/4
154.9
121.7
1/16
3.838
3.014
3/4
47.82
37.56
7/8
160.8
126.2
1/8
4.303
3.379
13/16
49.42
38.81'
7
166.6
130.9
3/16
4.795
3.766
7/8
51 .05
40.10
1/8
172.6
135.6
1/4
5.312
4.173
15/16
52.71
41 .40
1/4
178.7
140. <
5/16
5.857
4.600
4
54.40
42.73
3/8
184.9
145.1
3/8
6.428
5.049
1/16
56.11
44.07
1/2
191.3
150.2
7/16
7.026
5.518
1/8
57.85
45.44
5/8
197.7
155.2
1/2
7.650
6.008
3/16
59.62
46.83
3/4
204.2
159.3
9/16
8.301
6.520
1/4
61:41
48.24
7/8
210.8
165.6
5/8
8.978
7.051
5/16
63.23
49.66
8
217.6
171.0
H/16
9.682
7.604
3/8
65.08
51.11
1/4
231.4
181.8
3/4
10.41
8.178
7/16
66.95
52.58
1/2
245.6
193.0
13/16
11 .17
8.773
1/2
68.85
54.07
3/4
260.3
204 .4
7/8
11 .95
9.388
9/16
70.78
55.59
9
275.4
216.3
15/16
12.76
10.02
5/8
72.73
57.12
1/4
290.9
228.5
2
13.60
10.68
n/i6
74.70
58.67
1/2
306.8
241.0
1/16
14.46
11 .36
3/4
76.71
60.25
3/4
323.2
253.9
1/8
15.35
12.06
13/16
78.74
61.84
10
340.0
267.0
3/16
16.27
12.78
7/8
80.80
63.46
1/4
357.2
280.6
1/4
17.22
13.52
15/16
82.89
65.10
1/2
374.9
294. 4
5/16
18.19
14.28
5
85.00
66.76
3/4
392.9
308.6
3/8
19.18
15.07
Vl6
87.14
68.44
11
411.4
323.1
7/16
20.20
15.86
' 1/8
89.30
70.14
1/4
430.3
337.9
1/2
21.25
16.69
3/16
91 .49
71.86
1/2
449.6
353.1
9/16
22.33
17.53
1/4
93 72
73.60
3/4
469.4
368.6
5/8
23.43
18.40
5/16
95.96
75.37
12
489.6
384.5
Weight of Fillets.
Ra-
dius,
In.
Area,
Sq. In.
Weight per In., Lb.
Ra-
dius,
In.
Area,
Sq. In.
Weight per In., Lb.
Cast
Iron.
Steel.
Brass.
Cast
Iron.
Steel.
Brass.
1/4
0.0134
0.0035
0.0038
0.0040
13/16
0.1416
0.0369
0.0401
0.0414
5/16
.0209
.0054
.0059
.0061
7/8
.1634
.0428
.0465
.0479
3/8
.0302
.0078
.0085
.0088
15/16
.1886
.0491
.0534
.0550
7/16
.0411
.0107
.0116
.0120
1
.2146
.0559
.0608
.0626
1/2
.0536
.0140
.0152
.0157
1 1/8
.2716
.0709
.0771
.0794
9/1 fi
.0679
.0177
.0192
.0200
1 1/4
.3353
.0874
.0950
.0979
5/8
.0834
.0218
.0237
.0244
1 3/8
.4057
.0920
.1000
.1030
H/16
.1014
.0264
.0287
.0300
1 1/2
.4828
.1259
.1368
.1410
3/4
.1207
.0315
.0342
.0352
15/8
.5668
.1479
.1608
.1657
Continued on next page.
186
MATERIALS.
Weights per Lineal Inch of Bound, Square and Hexagon Steel.
Weight of 1 cu. in. = 0.2836 Ib. Weight of 1 cu. ft. » 490 Ib.
Thick-
ness or
Diam-
eter.
Round.
Square.
Hexagon
Thick-
ness or
Diam-
eter.
Round.
Square.
Hexagon.
V32
0.0002
0.0003
0.0002
17/8
0 . 783 1
0.9970
0.8635
1/16
.0009
.0011
.0010
115/
.8361
.0646
.9220
3/32
.0020
.0025
.0022
2
.8910
.1342
.9825
1/8
.0035
.0044
.0038
21/16
.9475
.2064
.0448
5/32
.0054
.0069
.0060
21/8
.0058
.2806
.1091
3/16
.0078
.0101
.0086
23/i6
.0658
.3570
.1753
7/32
.0107
.0136
.0118
21/4
.1276
.4357
.2434
1/4
.0139
.0177
.0154
25/ie
.1911
.5165
.3135
9/32
.0176
.0224
.0194
23/8
.2564
.6569
.3854
5/16
.0218
.0277
.0240
27/ie
.3234
.6849
.4593
H/32
.0263
.0335
.0290
21/2
.3921
.7724
.5351
3/8
.0313
.0405
.0345
25/8
.5348
1.9541
.6924
13/32
.0368
.0466
.0405
23/i
.6845
2.1446
.8574
7/16
.0426
.0543
.0470
27/8
.8411
2.3441
2.0304
15/32
.0489
.0623
.0540
3
2.0046
2.5548
2.2105
1/2
.0557
.0709
.0614
31/8
2.1752
2.7719
2.3986
17/32
.0629
.0800
.0693
31/4
2.3527
2.9954
2.5918
9/16
.0705
.0897
.0777
33/g
2.5371
3.2303
2.7977
19/32
.0785
.1036
.0866
31/2
2.7286
3.4740
3.0083
5/8
.0870
.1108
.0959
35/8
2.9269
3.7265
3.2275
21/32
.0959
.1221
.1058
33/4
3.1323
3.9880
3.4539
11/16
.1053
.1340
.1161
37/g
3.3446
4.2582
3.6880
23/32
.1151
.1465
.1270
4
3.5638
4.5374
3.9298
3/4
.1253
.1622
.1382
41/8
3.7900
4.8254
4.1792
25/32
.1359
.1732
.1499
41/4
4.0232
5.1223
4.4364
13/16
.1470
.1872
.1620
43/8
4.2634
5.4280
4.7011
27/32
.1586
.2019
.1749
41/2
4.5105
5.7426
4.9736
7/8
.1705
.2171
.1880
45/8
4.7645
6.0662
5.2538
29/32
.1829
.2329
.2015
43/4
5.0255
6.6276
5.5416
15/16
.1958
.2492
.2159
47/8
5.2935
6.7397
5.8371
31/32
.2090
.2661
.2305
5
5.5685
7.0897
6.1403
9
.2227
.2836
.2456
51/8
5.8504
7.4496
6.4511
1 1/16
.2515
.3201
.2773
51/4
6.1392
7.8164
6.7697
1 1/8
.2819
.3589
.3109
53/8
6.4351
8.1930
7.0959
1 3/16
.3141
.4142
. .3464
51/2
6.7379
8.5786
7.4298
U/4
.3480
.4431
.3838
55/8
7.0476
8.9729
7.7713
1 5/16
.3837
.4885
.4231
53/4
7.3643
9.3762
8.1214
1 3/8
.4211
.5362
.4643
57/8
7.6880
9 . 7883
8.4774
1 7/16
.4603
.5860
.5076
6
8.0186
10.2192
8.8420
1 V2
.5012
.6487
.5526
61/4
8 . 7007
11.0877
9.5943
1 9/16
.5438
.6930
.5996
6l/2
9.4107
11.9817
10.3673
1 5/8
.5882
.7489
.6480
63/4
10.1485
12.9211
11.1908
1 H/16
.6343
.8076
.6994
7
10.9142
13.8960
12.0351
1 3/4
.6821
.8685
.7521
71/2
12.5291
15.9520
13.8158
1 13/16
.7317
.9316
.8069
8
14.2553
18.1497
15.7192
Weight of Fillets.— Continued from page 185. .
Ra-
dius,
In.
Area,
Sq. In.
Weight per In., Lb.
Ra-
dius,
In.
Area,
Sq. In.
Weight per In., Lb.
Cast
Iron.
Steel.
Brass.
Cast
Iron.
Steel.
Br.ass.
13/4
0.6572
0.1713
0.1862
0.1920
27/8
1.774
0.4621
0.5022
0.5017
1 7/8
.7545
.1970
.2137
.2202
3
1.931
.4950
.5471
.5635
2
.8585
.2237
.2431
.2504
31/4
2.267
.5903
.6417
.6609
21/8
.9692
.2502
.2743
.2826
31/2
2.629
.6926
.7438
.7661
US
1.086
.2832
.3079
.3172
33/4
3.018
.7873
.8523
.8817
23/8
1.210
.3155
.3429
.3532
3.434
.8933
.9709
1.000
21/2
1.341
.3496
.3800
.3914
41/4
3.876
1.008
1.096
1.130
25/8
1.478
.3857
.4192
.4317
41/2
4.346
1.132
1.231
1.270
23/4
1.623
.4222
.4589
.4727
43/4
4.842
1.261
1.371
1.421
WEIGHT OF PLATE IKON.
187
q en. O q en NO q en <O q en NO q en \O q en NO q t>. en P !>. en P !>• en O f* rn O t»* tf\ O
\ ^ O O ^ rj cs en ^ ^ in ^_ NO tx cc GO ON O
in NO t> oq q *—m c4 en in NO i>» oq q •— _ CN en in NO rx q en in oo q en in oq o en in oq o en m
ini^OenNOO^f^inoO'— ^•X'Oe^inpp^^^enO^inONOeSod^'q'in-— t^en'ONin
O — <Senen»nininrxGOoOOOOMen T m m r> oo O
ir>v CN| N> NO en q t>» ^ — oq m en q t>« ^ •— CO in CM >O q in O^ en hN cs NO P.^ oq en ix — in
c\j m tx! O en" NO' od — ' ^ NO O^' rs m' r>«' O en m' od ^- NO es | tx r< i oo en O\ ^ p in O \o ^ ^ ' ~ :
I
SOOOOOOOOOOOOOOOOOOOOOO
in O in O in o m q m o m o m o m q m q O O O P O O P P P P P O O P P
kCM^TNOoo — minaoo'cSinr>.Ox'^-'^'Npooenri>ifsltx^p
in en tN — q aq r>. NO m en CN — O oq t>» NO m en c4 P r>« in CM O r>« m tN O r% m en O oo w
N^Oaqo^entf\^oCW(rCir*OeC*>9VoO<Ot^^*^'QO^!^95D^^!OS^
f>N|fN<fs|(s|rr»rnenenenen<^'I^-'^-^^ininininNONONOr«.t^t>.oOaOONOxN>OC
SNOenONOenONOenONOenONOenONOenOenNOqenNOOenNOqenNOPenNq
P' — ' en «n" NO* od P' — ' m' m* NO ad O — ' en m' NO* ad O en NO o' en NO' o' en NO' O en N© O en sO O
^^CNrMfSrNenenenenenen^Tj-TtTtrr^rinininNONONOtxt^i^aOooaoONO^ao
8inO«noinOinoinOinOino<nomoOOOOOOOOOOOOOOO
.r^in rx P pqin r> q<s u^ lt>. ,O(S mr>Pc4in ,pin ,pin ;pin , pinpinpinpinp
n\o!^°OO--fN^'inNo'^ado'>— rNl'eninNo'i^o'eNinfxppslini^qcMint^O^lin
<MrNfNrNirNir4fSMenenenenenenen-<T-<r^^ininininNONONONOrxt>.i>.
in m>n NO Nqr-N t>. t>.oqao O O OO O — — fMfNenrr inm Nqt>. 000^00^ fS en T>
eN en •* in* NO' rs ad O1" p' — "r^* en m' NO' t>.' ad O^' o' — en m' r>^ O^ ^- en in r^ O fN ^r NO co O <
— — — — — — — — rNHNrNirNlfNivNCNcsf>Nienenenenenen^r'T'lT^T|nin«r\»n
.
o o — f>i en •
-rNjeNfMfM(NvNtXvSeM
O enmaoOenm rsOenu
n — txenONOfSoom — h
O ^ op q -T tNl en in v
^ 8
^CJjfl ItNen u->Norx.aooNO — ev
'*"*£
188
MATEKIALS,
-^
• K
S.2
, -2
•JO 3
P,
0
***
_______ ---- CM CM CM CN CM CM CM CM CM CN en en
s oq oq r>. \q o «n i in
O — CM' en T' in vd r>.' oo & O — CM' m' •*" m' in \d t>J oo' o*' o — ' CM* e
—
O — csf en V «n \o t>> t>.' GO o^ o — ' «
' \o r»' GO o^' o — " CN en en V m* \o h
Oenr^omi>NOcnrv.omt^Oenr^otnt>.ocnt->.omi>NOcnt>NOe
QO^sOinen — O^Oinrn — Ooq Oincn — O GOOinen — OQOtvOmcn — Oo
o' — ' CN en T in in vO tW GO & O O — ' CN en V m" m' NO* t^.' GO' & O O — ' cs m' •*' m' i
-- - - _
o — cMen'cn'Tl"«nvdrxi>>oci>©O' — CN m "T T m \o f
CN CN CN CN CNi CN C
i
O— ^cNCNen'-«r'ininvdr>GO'ao'cKoo — CN en en ^-' m* >o vO r>.' oo' GO o' O — ^— (
rsinen — O\ O-^-CNO^ t^meno QOvOm — O^vO^fNO t^
sOenor^.enors-^-or>-«r — oo-t — aom — GOineNO^inc
o — ' CN csf en T "f in vd o ix GO oo o^ o o — ' CN CM' m' V V m' -o <5 1->' oo GO' o^' o o —
^
O — — ' CM' en en T' m' in vd vO t>.' GO' GO' O^ O O — ' — CM* en m' -^ in in \d ^d t^ GO' GO' & O
'inCMO>-sO1<;r- GOvOenOoOmfMO^r^'^' —
.^.^.^*TR^.^.^^.*.^.o.^.^.^.^.
' *
..................
O — — ' CN CM en -^ -^ in in* vd ^0 r> GO GO 0s 0s O o -~ CM' CM' en en
n — GO-* — aoinc
'
— GO-* — QOincMavOenONOmo
romGqenr>.cMr>. — vD — «noino
'' ' '
--' — : CN CM' en en W m'
^ oo CM O O in Ov en t>i — in O ^ GO CM ^0
o "^^c^Nr^fntn^^'^u^irC^'^i
.
— in O ^ oo^ CM vO O in O^ en
''''
en in oo
GO^OsOCNGO^OvOenau^
hs O en «n ao O en O GO — en vO O
O ' '—' -^ ' — — ^cNCM'cMCM'en'en'en'e
— » — —
> CM -T t>. C> CM in hxO CM in GO O en
''''''''
GO r>. in en
O — cMcn-tinvorxooooovo — c
WEIGHTS OF FLAT WROUGHT IRON. 189
o\GOcorx<omTt'fnenfS — ©O^ooGorNineneNCcot^inen
CN in GO — rr tQ © en sO 0? CN in r> © en O es GO n- © m — t-s en
{vj Tf \d & — ' en ^d co' © CS m' I-N' o' <sf "T O — ' in ©' • ~ **" — ' — ' — '
n O l^»
OI- — O
""'
— ' en «n vd od o — ' m' >K vd GO' o —
o — ' m' >K vd GO' o — 1*> m' o o c<\ \o' o rK \d o c
— — — — — — <NCN(ses(Sc^t^\fn'^"<r^"M
— <N ^ tn sO
:$s
n — r^ ro oo -^- O vO tM co c^ m
r> oo O f
— OOO
'
>.' GO' O\ — ts T' in \d GO' O>' — ' pg m" GO' O t
°— ©
s m co CA O^ -^ O m o ^D — r>« co GO O^ O — rs m en
>. — ^GO — inOfsivOOfANOfnor^infso^^co
'''''''' ''''
inom©in©in©in©»n©in©in©©©©©©©©o
eNinfxOtsiinr^OeNinhNCfNmhNCincmoinOin©
»— oienin^Ot^iao© — eNfen'mot^ooceNinr^Of^jin^N©*
fmr>.o^'— enmr^o^ — enmtviO^ — *nt o> en t> — m^en
•^' en ^* m t^ GO 0s o — en •*!• m \o i>« o^ — m O GO — en in GO*
— — — — — — — — fNCNCMfsjenenenen
«~ cs en ^T m vd t>« oo & © es en ^1" m \o r^ o^ •— ^ \d GO' ©' e>i m*
© © — — (S f\j eNi encn^^J'ininin\OvOi>«GOOt>©©'— <Sen
•^ qqt>;©
g ©' o' oo «
H IC>OCO^.
>> :x
•5! *vo
o •*> .V K
-o x 'X i»
ea M ;o ^
I '^'If
r4 %$"3 ^ X-
'
K^^E hC
SX^.S
$ Jill -*3^^
"S X WK~ •*
I s|5s
I "Sg-So
190
MATERIALS.
WEIGHTS OF STEEL BLOOMS.
Soft steel. 1 cubic inch — 0.284 Ib. 1 cubic foot = 490.75 Ibs.
Size,
Inches
Lengths.
1"
6"
13"
18"
24"
30"
36"
42"
48"
54"
60"
66"
12 X6
X5
20.45
17.04
123
102
245
204
368
307
491
409
613
511
736
613
~859
716
982
818
1104
920
1227
1022
1350
1125
X4
13.63
82
164
245
327
409
491
573
654
736
818
900
11 X6
18.75
113
225
338
450
563
675
788
900
1013
1 125
1238
X5
15.62
94
188
281
375
469
562
656
750
843
937
1031
X4
12.50
75
150
225
300
375
450
525
600
675
750
825
10 X8
22.72
136
273
409
545
682
818
954
1091
1227
1363
1500
X7
19.88
120
239
358
477
596
715
835
955
1074
1193
1312
X6
17.04
102
204
307
409
511
613
716
818
920
1022
1125
X5
14.20
85
170
256
341
426
511
596
682
767
852
937
X4
11.36
68
136
205
273
341
409
477
546
614
682
750
K3
8.52
51
102
153
204
255
306
358
409
460
511
562
9 X8
20.45
123
245
368
491
613
736
859
982
1104
1227
1350
X7
17.89
107
215
322
430
537
644
751
859
966
1073
1181
X6
15.34
92
184
276
368
460
552
644
736
828
920
1012
X5
12.78
77
153
230
307
383
460
537
614
690
767
844
X4
10.22
61
123
184
245
307
368
429
490
552
613
674
X3
7.66
46
92
138
184
230
276
322
368
414
460
506
8 X8
18.18
109
218
327
436
545
655
764
873
982
1091
1200
X7
15.9
95
191
286
382
477
572
668
763
859
954
1049
X6
13.63
82
164
245
327
409
491
573
654
736
818
900
X5
11.36
68
136
205
273
341
409
477
546
614
682
750
X4
9.09
55
109
164
218
273
327
382
436
491
545
600
X3
6.82
41
82
123
164
204
245
286
327
368
409
450
7 X7
13.92
83
167
251
334
418
501
585
668
752
835
919
X6
11.93
72
143
215
286
358
430
501
573
644
716
788
X5
9.94
60
119
179
7,38
298
358
417
477
536
596
656
X4
7.95
48
96
143
191
239
286
334
382
429
477
525
X3
5.96
36
72
107
143
179
214
250
286
322
358
393
61/2X61/2
12.
72
144
216
288
360
432
504
576
648
720
792
X4
7.38
44
89
133
177
221
266
310
354
399
443
487
6 X6
10.22
61
123
184
245
307
368
429
490
551
613
674
X5
8.52
51'
102
153
204
255
307
358
409
460
511
562
X4
6.82
41
82
123
164
204
245
286
327
368
409
450
X3
5.11
31
61
92
123
153
184
214
245
276
307
337
5i/2X5i/2
8.59
52
103
155
206
258
309
361
412
464
515
567
X4
6.25
37
75
112
150
188
225
262
300
337
375
412
5 X5
7.10
43
85
128
170
213
256
298
341
383
426
469
X4
5.68
34
68
102
136
170
205
239
273
307
341
375
41/2X41/2
5.75
35
69
104
138
173
207
242
276
311
345
380
X4
5.11
31
61
92
123
153
184
215
246
276
307
338
4 X4
4.54
27
55
82
109
136
164
191
218
246
272
300
X31/2
3.97
24
48
72
96
119
143
167
181
215
238
262
X3
3.40
20
41
61
82
102
122
143
163
184
204
224
31/2X31/2
3.48
21
42
63
84
104
125
146
167
188
209
230
X3
2.98
18
36
54
72
89
107
' 125
143
161
179
197
3 X3
2.56
15
31
46
61
77
92
108
123
138
154
169
ROOFING MATERIALS AND ROOF CONSTRUCTION. 191
ROOFING MATERIALS AND ROOF CONSTRUCTION.
Approximate Weight of Roofing Materials.
(American Sheet & Tin Plate Co.)
Material.
Lb. per
sq. ft.
Corrugated galvanized iron, No. 20, unbearded
Copper, 16 oz. standing seam . . . . ,
Felt and asphalt, without sheathing
Glass, i/s in. thick
Hemlock sheathing, 1 in. thick
Lead, about l/s in. thick
Lath and plaster ceiling (ordinary)
Mackite, 1 in. thick, with plaster
Neponset roofing, felt, 2 layers
Spruce sheathing, 1 in. thick
Slate, 3/i6 in. thick, 3 in. double lap
Slate, l/s in. thick, 3 in. double lap
Shingles, 6 in. X 18 in., 1/3 to weather
Skylight of glass, 3/ie to 1/2 in., including frame
Slag roof, 4-ply
Terne plate, 1C, without sheathing
Terne plate, IX, without sheathing
Tiles (plain), 10 1/2 in. X 6 1/4 in. X 5/8 in. - 5 1/4 in. to weather .
Tiles (Spanish), 14 1/2 in. X 10 l/2 in.- 7 1/4 in. to weather
White pine sheathing, 1 in. thick
Yellow pine sheathing, 1 in. thick
21/4
,./<
<»/<
6 to 8
6 to 8
10
1/2
21/2
63/4
4l/2
4 to 10
4
1/2
5/8
18
81/2
21/2
Snow and Wind Loads on Roofs.
In designing roofs, in addition to the weight of roofing material to
be supported, recognition must be given to possible snow and wind loads.
In snowy localities the minimum snow load per horizontal sq. ft. of
roof should be considered as 25 Ib. for slopes up to 20 degrees. For
each degree increase in slope up to 45 degrees, this load may be reduced
1 Ib. Above 45-degree slope no snow load need be considered. In
especially severe climates these allowances should be increased in ac-
cordance with actual conditions.
The wind load is the pressure normal to the surface of the roof pro-
duced by a wind blowing horizontally. The wind pressure against a
vertical plane as determined by the U. S. Signal Service at Mt. Wash-
ington, N. H., is for various velocities of wind:
Velocity, miles per hr .. 10 20 30 40 50 60 80 100
Pressure, Ib. per sq. ft 0.4 1.6 3.6 6.4 10.0 14.4 25.6 40.0
The pressure on a flat surface is twice that on a cylindrical surface
of the same projected area. For further information regarding wind
pressure, see page 626. As the slope of the roof increases, the greater
becomes the wind pressure on it. The pressure normal to the surface
of roofs of different slopes exerted by a wind velocity of 100 miles per
hour (40 Ib. per sq. ft. on a vertical plane) is
Rise, in. per ft. . 4 6 8 12 16 18 24
Angle with
horizontal. .
Pitch (Rise -j-
Span) 1/6 1/4 V3 1/2 V3 V4 1
Wind pressure. . 16.8 23.7 29.1 36.1 38.7 39.3 40.0
Roof Construction. (N. G. Taylor Co., Philadelphia.) — Roofs with
less than 1/3 pitch are made with flat seams, and should preferably be
covered with 14 X 20 in. sheets, rather than with 20 X 28-in. sheets, as
the larger number of seams tend to stiffen the surface and prevent
buckles. For a flat seam roof the edges of the sheets are turned 1/2 in.,
locked together and soldered. The sheets are fastened to the sheath.-
. 18° 26' 26° 34' 33° 41' 45° 0' 53° 8' 56° 19' 63° 26'
192
MATERIALS,
ing boards by cleats 8 in. apart and locked in the seams. Two 1-in
barbed and tinned nails are driven in each cleat. Steep tin roofs
should be made with standing seams and from 28 X 20-in. sheets. The
sheets are first single or double seamed and soldered together in a long
strip reaching from eave to ridge. The sloping seams are composed
of two "upstands" interlocked at the upper edge and held to the sheath-
ing boards by cleats. No solder is used in standing seams as a rule
In soldering tin roofs, only a good rosin flux should be used. The use
of acid must be carefully avoided.
ttoof Paints. — The American Sheet and Tin Plate Co. recommends
for painting metal work and tin roofs metallic brown, Venetian red, or
red oxide paint, ground in pure linseed oil. The paint should be
rubbed well in, and should not be spread thin. See also Preservative
Coatings, page 471.
Tin Plates are made of soft sheet steel coated with tin, and are
called in the trade "coke" or "charcoal" plates according to the weight
of coating. These terms have survived from the time when the highest
quality of plate was made from charcoal-iron, while the lower grades
were made from coke-iron. Consequently, plates to-day with the
lighter coatings are known as coke-plates, and are used for tin cans, etc.
The various grades of charcoal-plates are designated by the letters A to
AAAAA, the latter having the heaviest coating and the highest polish.
There is one other brand made with a heavier coating than 5A, which is
especially adapted for nickel-plating. The unit 9f value and measure-
ment of tin plates is the "base-box," which will hold 112 sheets of
14 X 20 in. plate, or 31360 sq. in. of any size. Plates lighter than 65 Ib.
per base box (No. 36 gage) are known as taggers tin.
Weights of Standard Galvanized Sheets.
(American Sheet & Tin Plate Co.)
1
o
M
$£
&B
d*
|
d
O
1*
§£
fc^
5
1
O
&£
$$
I*
a*
O
M
«s
I*
tf
8
9
10
11
12
13
14
112.5
102.5
92.5
82.5
72.5
62.5
52.5
7.031
6.406
5.781
5.156
4.531
3.906
3.281
15
16
17
18
19
20
21
47.5
42.5
38.5
34.5
30.5
26.5
24.5
2.969
2.656
2.406
2.156
1.906
1.656
1.531
22
23
24
25
26
27
28
22.5
20.5
18.5
16.5
14.5
13.5
12.5
1.406
1.281
1.156
1.031
0.906
.844
.781
29
30
31
32
33
34
11.5
10.5
9.5
9.0
8.5
8.0
0.719
.656
.594
.563
.531
.500
Standard Weights and Gages of Tin Plate.
(American Sheet & Tin Plate Co., Pittsburgh.)
II
Nearest
Wire
Gage No.
cr
O3
I*
^
S.g
PQo
^(N
°x
F£
<u £
T3 S
^
Nearest
Wire
Gage No.
a1
CO
fe£
a ...
^
gfl
«i
°X
^a
100
107
118
135
128
139
155
148
175
•§§
g
Nearest
Wire
Gage No.
O"
CQ .
§53
P. r
^
Sg
§
F*
55 Ib.
60
65
70
75
80
85
90
95
38
37
36
35
34
33
32
31
31
0.252
.275
.298
.321
.344
.367
.390
.413
.436
55
60
65
70
75
80
85
90
95
lOOlb.
1C
1181b.
IX
IXL
DC
2X
2XL
3X
30V2
30
29
28
28
28
27
27
26
0.459
.491
.542
.619
.588
.638
.711
.679
.803
3XL
DX
4X
4XL
D2X
D3X
D4X
26
26
25
25
24
23
22
0.771
.826
.895
.863
.964
1.102
1.239
168
180
195
188
210
240
270
TIN AND TERNE PLATES.
193
Sizes and Net Weight per Box of 100 Ib. (0.459 Ib. per sq. ft.)
Tin Plates.
Size of
Sheets.
Sheets
per
Box.
Weight
per
Box.
Size of
Sheets.
Sheets
per
Box.
Weight
per
Box.
Size of
Sheets.
Sheets
per
Box.
Weight
per
Box.
10 X14
225
100
15X15
225
161
14 X31
112
155
14 X20
112
100
16X16
225
183
111/4X223/4
112
91
20 X28
112
200
17X17
225
206
131/4x173/4
112
84
10 X20
225
143
18X18
112
116
131/4X191/4
112
91
11 X22
225
172
19X19
112
129
131/2x191/2
112
94
11i/2'X23
225
189
20X20
112
143
131/2x193/4
112
95
12 X12
225
103
21X21
112
158
14 Xl83/4
124
103
12 X24
112
103
22X22
112
172
14 X19V4
120
103
13 X13
225
121
23X23
112
189
14 X21
112
105
13 X26
H2
121
24X24
112
204
14 X22
.112
110
14 X14
225
140
26X26
112
241
14 X221/4
112
111
14 X28
112
140
16X20
112
114
15V2X23
112
127
For weight per box of other than 100-lb. plates multiply by the
figures in the column "Weight per Box" in the preceding table, and
divide by 100. Thus for IX plates 20 X 28 in., 200 X 135 + 100 = 270.
Sheets Required for Tin Roofing.
(American Sheet & Tin Plate Co., 1914.)
Sheets
Sheets
Sheets
Sheets
Sheets
e
Required.
£
Required
.j
Required.
+1
Required.
42
Required.
S_4
R
g^_.
,
£_;
w
g^_.
£H
Is
CO
1^
s^
cr
CO
1^
2^
s
1
S&H
1
§^
s^
D*
CO
1^
*o
^X
^*
"o
^ V
T3 V
*o
co^
'O V
"o
^ V
3*
"8
co§
^
1
£~
CO
6
fc
"S
ST
S3 •*•
CO^
6
I-
co^
6
fc
!-
Is
CO
1
ICTJ-
Is
CO
100
59
31
280
164
86
460
269
141
640
374
197
820
479
252
110
65
34
290
170
89
470
275
144
650
379
200
830
484
255
120
70
37
300
175
92
480
280
148
660
385
203
840
490
258
130
76
40
310
181
95
490
286
151
670
391
206
850
496
26!
140
82
43
320
187
99
500
292
154
680
397
209
860
502
264
150
88
46
330
193
102
510
298
157
690
403
212
870
508
267
160
94
50
340
199
105
520
304
160
700
409
215
880
514
270
170
100
53
350
205
108
530
309
163
710
414
218
890
519
273
180
105
56
360
210
540
315
166
720
420
221
900
525
276
190
111
59
370
216
114
550
321
169
730
426
224
910
531
279
200
117
62
380
222
'117
560
327
172
740
432
227
920
537
282
210
123
65
390
228
120
570
333
175
750
438
230
930
543
285
220
129
68
400
234
123
580
339
178
760
444
233
940
549
288
230
135
71
410
240
126
590
344
181
770
449
236
950
554
291
240
140
74
420
245
129
600
350
184
780
455
239
960
560
295
250
146
77
430
251
132
610
356
187
790
461
243
970
566
298
260
152
80
440
257
135
620
362
190
800
467
246
980
572
301
270
158
83
450
263
138
630
368
194
810
473
249
990
578
304
Terne Plates, or Roofing Tin, are coated with an alloy of tin and lead.
In the "U. S. Eagle, N.M." brand the alloy is 32% tin, 68% lead.
The weight per 112 sheets of this brand before and after coating is as
follows:
1C 14 X 20 1C 20 X 28 IX 14 X 20 IX 20 X 28
Black plates ... 95 to 100 Ib. 190 to 200 Ib. 125 to 130 Ib. 250 to 260 Ib.
After coating. . . 115 to 120 230 to 240 145 to 150 290 to 300
Terne plates are made in two thicknesses: 1C, in which the iron body
weighs about 50 Ib. per 100 sq. ft., and IX, in which it weighs 62 1/2 Ib.
per 1.00 sq. ft. The 1C grade is preferred for roofing, wnile the !?C
194
MATERIALS.
grade is used for spouts, valleys, gutters, and flashings. The standard
weight of 14 X 20 in. 1C plates is 107 Ib. per base-box, and of 14 x 20-
in. IX plate 135 Ib.
Long terne sheets are made in'gages, Nos. 14 to 32, from 10 to 40 in.
wide and up to 120 in. long. They are made in five grades with coat-
ings of 8, 12, 15, 20, and 25 Ib.
A box of 112 sheets 14 X 20 in. will cover approximately 192 sq. ft.
of roof, flat seam, or 583 sheets 1000 sq. ft. For standing seam roofing
a sheet 20 X 28 in. will cover 475 sq. in., or 303 sheets 1000 sq. ft. A
box of 112 sheets 20 X 28 in. will cover approximately 366 sq. ft.
The common sizes of tin plates are 10 X 14 in. and multiples of that
measure. The sizes most generally used are 14 x 20 and 20 X 28 in.
Specifications for Tin and Terne Plate. (Penna. R.R., 1903.)
Material Desired.
Rejected if less than
Tin
Plate.
No. 1
Terne.
No. 2
Terne.
Tin
Plate.
No. 1
Terne.
No. 2
Terne.
Coating:
Tin, per cent
100
0
0.023
0.496
.625
.716
.808
.900
26
74
0.046
0.519
.648
.739
.831
.923
16
84
0.023
0.496
.625
.716
.808
.900
Lead, per cent
Amount per sq. ft., Ib. .
Weight, Ib. per sq. ft. of
Grade 1C...
0.0183
0.468
.590
.676
.763
.850
0.0413
0.490
.612
.699
.787
.874
0.083
0.468
.590
.676
.763
.850
Grade IX ...
Grade IXX
Grade IXXX . .
Grade IXXXX
Each sheet in a shipment of tin or terne plate must (1) be cut as
nearly exact to size ordered as possible; (2) must be rectangular, flat,
and free from flaws; (3) must double seam successfully under reason-
able treatment; (4) must show a smooth edge with no sign of fracture
when bent through an angle of 180 degrees and flattened down with a
wooden mallet ; (5) must be so nearly like every other sheet in the ship-
ment, both in thickness and in uniformity and amount of coating, that
110 difficulty will arise in the shops due to varying thickness of sheets.
Corrugated Sheets. — Weight per 100 Sq. Ft., Lb.
(American Sheet & Tin Plate Co., Pittsburgh, 1914.)
Corruga-
tions.
5/8 in.
1V4 in.
2 in.
2 i/2 in.*
26 in.
wide.
2 1/2 in.f
27 i/2 in.
wide.
3 in.
5 in.
U. S. Std.
Sheet
Metal
Gage.
"8
a
&
jh
eft N
o
1
a
'3
ft
i
11
o'rt
!
ia
PH
li
O'~
I
1
jb
5*
1
&
ji
1
1
PH
li
0'"
1
'<«
PH
"68
75
81
95
108
122
135
148
162
215
269
336
470
h
73 N
0'~
~~77
84
91
97
111
124
137
151
164
178
231
285
352
486
29
28
27
26
25
24
23
22
21
20
18
16
14
12
10
"i\
78
85
99
113
81
88
95
102
116
130
"7\
78
85
99
113
127
141
155
169
81
88
95
102
116
130
144
158
172
186
"68
75
82
95
109
122
136
149
163
216
270
77
84
91
98
111
125
138
151
165
178
232
286
"68
75
82
95
109
122
136
149
163
216
270
338
472
607
77
84
91
98
111
125
138
151
165
178
232
286
353
488
623
69
76
83
97
110
124
137
151
165
219
274
342
478
615
78
85
92
99
113
126
140
153
167
181
235
290
358
494
631
"68
75
82
95
109
122
136
149
163
216
270
338
472
77
84
91
98
111
125
138
151
165
178
232
286
353
488
....
....
* Siding. t Roofing,
SLATE.
195
Covering width of plates, lapped one corrugation. 24 in. Standard
lengths, 5, 6, 7, 8, 9, and 10 ft.; maximum length, 12 ft.
Ordinary corrugated sheets should have a lap of 1 1/2 or 2 corrugations
side-lap for roofing in order to secure water-tight side seams ; if the roof
is rather steep 1 1/2 corrugations will answer. Some manufacturers
make a special high-edge corrugation on sides of sheets, and thereby are
enabled to secure a water-proof side-lap with one corrugation only, thus
saving from 6% to 12% of material to cover a given area.
No. 28 gage corrugated iron is generally used for applying to wooden
buildings; but for applying to iron framework No. 24 gage or heavier
should be adopted.
Galvanizing sheet iron adds about 21/2 oz. to its weight per square
foot.
Slate.
Slate in roofs is measured by the square, 1 square being equal to 100
superficial square feet. In measuring, the width of the eaves is allowed
at the widest part. Hips, valleys, and cuttings are measured lineally
and 6 in. extra is allowed. The thickness of slate for roofing varies
usually from 1/8 to 3/16 in. The weight varies, when lapped, from
4 1/2 to 63/4 lb. per sq. ft. The laps range from 2 to 4 in., 3 in. being
the standard. As" slate is usually laid, the number of square feet of roof
covered by one slate is w (I — 3) -~ 288, w and I being the width and
length respectively of the slate in inches.
Number and Superficial Area of Slate for One Square of Roof.
Size,
In.
No.
per
Sq.
Area,
£
Size,
In.
No.
K
Area,
Sq.
Ft.
Size,
In.
No.
I?
Area,
1?:
Size,
In.
No.
per
Sq.
Area,
Sq.
Ft.
6X12
7X12
533
457
267
10X14
8X16
261
277
246
10X20
11 X20
169
154
235
12X24
14X24
114
98
228
8X12
9X12
7X14
8X14
400
355
374
327
'254'
9X16
10X16
9X18
10X18
246
221
213
192
'240'
12X20
14X20
16X20
12 X22
141
121
137
126
23J
16X24
14X26
16X26
86
89
78
'225'
9X14
291
12X18
160
240
14X22
108
Weight of Slate, in Pounds, for One Square of Roof.
(1 cu. ft. slate = 175 lb.)
Length
of
Slate, In.
Thickness of Slate, Inch.
Vs
3/16
V4
3/8
Va
5/8
3/4
1
!>4'
16
18
20
22
24
26
483
460
445
434
425
418
412
407
724
688
667
650
637
626
617
610
967
920
890
869
851
836
825
815
1450
1379
1336
1303
1276
1254
1238
1222
1936
1842
1784
1740
1704
1675
1653
1631
2419
2301
2229
2174
2129
2093
2066
2039
2902
2760
2670
2607
2553
2508
2478
2445
3872
3683
3567
3480
3408
3350
3306
3263
Corrugated Arches.
For corrugated curved sheets for floor and ceiling construction in
fireproof buildings, No. 16, 18, or 20 gage iron is commonly used, and
sheets may be curved from 4 to 10 in. rise — the higher the rise the
stronger the arch. By a series of tests it has been demonstrated that
corrugated arches give the most satisfactory results with a base length
not exceeding 6 ft., and 5 ft. or even less is preferable where great
strength is required. These corrugated arches are made with 1 1/4 X 3/8,
196
MATERIALS.
2 1/2 X 1/2, 3 X 3/4, and 5 X Vs in. corrugations, and in the same width
of sheet as above mentioned.
Terra-Cotta.
Porous terra-cotta roofing 3 in. thick weighs 16 Ib. per square foot and
2 in. thick 12 Ib. per square foot.
Ceiling made of the same material 2 in. thick weighs 11 Ib. per square
foot.
Tiles.
Flat tiles 61/4 X 101/2 X 5/8 in. weigh from 1480 to 1850 Ib. per square
of roof (100 square feet), the lap being one-half the length of the tile.
Tiles with grooves and fillets weigh from 740 to 925 Ib. per square of
roof.
Pan-tiles 141/2 X 101/2 laid 10 in. to the weather weigh 850 Ib. per
square.
Pine Shingles.
The figures below give the weight of shingles required to cover one
square of a common gable roof. For hip roofs add 5 per cent.
Inches exposed to weather. . ............. 4 41/2 5 51/2 6
No. of shingles per square of roof ......... 900 800 720 655 600
Weight of shingles per square, Ib ......... 216 192 173 157 144
Skylight Glass Required for One Square of Roof.
Dimensions, in ............... 12 X 48 15 X 60 20 X 100 94 X 156
Thickness, in ........ , ........ 3/16 i/4 3/8 l/2
Area, sq. ft .................. 3.997 6.246 13.880 101.768
Weight per square, Ib ......... 250 350 500 700
No allowance has been made in the above figures for lap. If ordinary
window-glass is used, single thick glass (about Vie inch) will weigh about
82 Ib. per square, and double thick glass (about i/s inch) will weigh
about 164 Ib. per square, no allowance being made for lap. A box of
ordinary window-glass contains as nearly 50 square feet as the size of
the panes will admit. Panes of any size are made to order by the
manufacturers, but a great variety of sizes are usually kept in stock,
ranging from 6X8 inches to 36 X 60 inches.
THICKNESS OF CAST-IRON WATER-PIPES.
P. H. Baermann, in a paper read before the Engineers' Club of Phila-
delphia in 1882, gave twenty different formulae for determining the
thickness of cast-iron pipes under pressure. The formulae are of three
classes:
1. Depending upon the diameter only.
2. Those depending upon the diameter and head and which add a
constant.
3. Those depending upon the diameter and head contain an additive
or subtractive term depending upon the diameter, and add a constant.
The more modern formulae are of the third class, and are as follows:
t = 0.00008/id + O.Old + 0.36 ................ Shedd, No. 1.
t = 0.00006/id + 0.0133d + 0.296 ............. Warren Foundry, No. 2.
t = 0.000058M + 0.0152d 4- 0.312 ............ Francis, No. 3.
t = 0.000048/id 4- 0.013d + 0.32 .............. Dupuit, No. 4.
t = 0.00004/id 4- 0.1 Vd~4- 0.15 ..... ......... Box, No. 5.
t = 0.000135/id 4- 0.4 - 0.001 Id .............. Whitman, No. 6.
t = 0.00006 (h 4- 230) d 4- 0.333 - 0.0033d ...... Fanning, No. 7.
t = O.OOOlSftd + 0.25 - 0.0052d ............... Meggs, No. 8.
In which t = thickness in inches, h = head in feet, d = diameter in
inches. For h = 100 ft., and d = 10 in., formulas Nos. 1 to 7 inclusive
give to from 0.49 to 0.54 in., but No. 8 gives only 0.35 in. Fanning's
formula, now (1908) in most common use, gives 0.50 in.
Rankine (Civil Engineering}, p. 721, says: "Cast-iron pipes should be
made of a soft and tough quality of iron. Great attention should be paid
THICKNESS OF CAST-IRON WATEB-HPES. 1Q7
to molding them C9rrectly, so that the thickness may be exactly uniform
all round. Each pipe should be tested for air-bubbles and flaws by ring-
ing it with a hammer, and for strength by exposing it to double the
intended greatest working pressure." The rule for computing the thick-
ness of a pipe to. resist a given working pressure is t = rp/f, where r is
the radius in inches, p the pressure in pounds per square inch, and /the
tensile strength of the iron per square inch. When / = 18,000, and a
factor of safety of 5 is used, the above expressed in terms of d and h
becomes t = 0.5d X 0.433/1 -T- 3600 = 0.00006d/i.
"There are limitations, however, arising from difficulties in casting,
and by the strain produced by shocks, which cause the thickness to be
made greater than that given by the above formula." (See also Burst-
ing Strength of Cast-iron Cylinders, under "Cast Iron.")
The most common defect of cast-iron pipes is due to the "shifting of
the core," which causes one side of the pipe to be thinner than the other.
Unless the pipe is made of very soft iron the thin side is apt to be chilled
in casting, causing it to become brittle and it may contain blow-holes
and " cold-shots." This defect should be guarded against by inspection
of every pipe for uniformity of thickness.
Standard Thicknesses and Weights of Cast-iron Pipe.
(U. S. Cast Iron Pipe & Foundry Co., 1915.)
:§ .
Class A.
Class B.
Class C.
Class D.
100 Ft. Head.
200 Ft. Head.
300 Ft. Head.
400 Ft. Head.
££
43 Lb. Pressure.
86 Lb. Pressure.
130 Lb. Pressure.
1 73 Lb. Pressure
•rt c
.6 c3
**
Pounds per
AS
Pounds per
%&
Pounds per
%*
Pounds per
|S
£
•S -
Ft.
L'gth.
2 if
El
Ft.
L'gth.
PH ®
Ft.
L'gth.
g|
Ft.
Lgfch.
3
0.39
14.5
175
0.42
16.2
194
0.45
17.1
205
0.48
18.0
216
4
.42
20.0
240
.45
21.7
260
.48
23.3
280
.52
25.0
300
6
.44
30.8
370
.48
33.3
400
.51
35.8
430
.55
38.3
460
8
.46
42.9
515
.51
47.5
570
.56
52.1
625
.60
55.8
670
10
.50
57.1
685
.57
63.8
765
.62
70.8
850
.68
76.7
920
12
.54
72.5
870
.62
82.1
985
.68
91.7
1100
.75
100.0
1200
14
.57
89.6
1075
.66
102.5
1230
.74
116.7
1400
.82
129.2
1550
16
.60
108.3
1300
.70
125.0
1500
.80
143.8
1725
.89
158.3
1900
18
.64
129.2
1550
.75! 150.0
1800
.87
175.0
2100
.96
191.7
2300
20
.67
150.0
1800
.80
175.0
2100
.92
208.3
2500
.03
229.2
2'/50
24
.76
204.2
2450
.89
233.3
2800
.04
279.2
3350
.16
306.7
3680
30
.88
291.7
3500
.03
333.3
4000
.20
400.0
4800
.37
450.0
5400
36
.99 391.7
4700
.15
454.2
5450
.36
545.8
6550
.58
625.0
7500
42
.10' 512.5
6150
.28
591.7
7100
.54
716.7
8600
.78
825.0
9900
48
.26! 666.7
8000
.42
750.0
9000
.71
908.3
10900
.96 1050.0
12600
54
.35 800.0
9600
.55
933.3
11200
.90
1141.7
13700
2.23il341.7
16100
60
.39 916.7
11000
.67
1104.2
13250
2.00
1341.7
16100
2.38
1583.3
19000
72
.62 1281.9
15380
.95
1547.3
18570
2.39
1904.3
22850
.
84
.72! 1635.8
19630
2.22
2104.1
25250
The above weights are per length to lay 12 feet, including standard
sockets; proportionate allowance to be made for any variation.
Weight of Underground Pipes. (Adopted by the Natl. Fire Pro-
tection Association, 1913.) Weights are not to be less than those
specified when the normal pressures do not exceed 125 Ib. per sq. in.
When the normal pressures are in excess of 125 Ib. heavier pipes should
be used. The weights given include sockets.
Pipe, in. . , 46 8 10 12 14 16
Weights per foot, Ib.... 23 35.8 52.1 70.8 91.7 116.7 143.8
198
MATERIALS.
Standard Thicknesses and Weights of Cast Iron Pipe.
For Fire Lines and High-Pressure Service.
(U. S. Cast Iron Pipe & Foundry Co., 1915.)
Nominal Inside
Diam., In.
Class E.
500 ft. Head.
217-lb. Pressure.
Class F.
600 ft. Head.
260-lb. Pressure.
Class G.
700 ft. Head.
3044b. Pressure.
Class H.
800 ft. Head.
347-lb. Pressure.
ft
r . O>
& c
Lb. per
A&
_o -
Lb. per
if
Hg
Lb. per
ii
r. 0>
^ C
Lb. per
Ft.
Lgth.
Ft.
Lgth.
Ft.
Lgth.
Ft.
Lgth.
6
8
10
12
14
16
18
20
24
30
36
0.58
.66
.74
.82
.90
.98
.07
.15
.31
.55
.80
42.5
60.9
86.9
114.6
145.6
180.7
221.8
265.8
359.1
530.9
738.1
510
731
1043
1375
1747
2168
2662
3190
4309
6371
8857
0.61
.71
.80
.89
.99
1.08
1.17
1.27
1.45
1.73
2.02
44.3
66.8
92.8
122.8
158.8
196.5
239.3
287.3
392.3
588.8
821.0
531
802
1114
1474
1905
2358
2872
3448
4707
7065
9852
0.65
.75
.86
.97
.07
.18
.28
.39
.75
48.1
72.3
101.4
136.2
175.1
218.0
268.2
321.8
479.8
577
868
1217
1634
2101
2616
3218
3862
5758
0.69
.80
.92
.04
.16
.27
.39
.51
.88
50.5
76.1
107.3
144.4
187.5
233.8
287.8
345.8
510.6
606
913
1288
1733
2250
2805
3453
4149
6127
All lengths to lay 12 ft. Weights are approximate; those per foot
include allowance for bell; those per length include bell. Propor-
tionate allowance is to be made for variations from standard length.
Standard and Heavy Cast Iron Bell and Spigot Gas Pipe.
Weights and Dimensions.
(U. S. Cast Iron Pipe & Foundry Co., 1914.)
Actual Out-
Thickness,
Dia. of Sock-
A
Weight per
Weight per
,— fi
side Dia., In.
In.
ets, In.
*o w"
Foot, Lb.
Length, Lb.
•p
$4
£
'O .
CT3
£
"O .
CTJ
i
O 4_>
fl
^ .
fl"rt
£
ro .
CTJ
>»
>
§s
11
o>
3a
8
la
0)
&o
3s
8
OS £
8
fc
&«
w
wrt
w
oa*
w
pW
£*
W
02*
w
4
4.80
5.00
0.40
0.42
5.80
5.80 4.00
19.33
20.0
232
240
6
6.90, 7.10
.43
.47
7.90
7.90 4.00
30.25
32.8
363
394
8
9.05 9.05
.45
.49
10.05
9.85 4.00
42.08
45.3
505
544
10
11 .10i 11 .10
.49
.51
12.10
11 .90 4.00
55.91
58.7
671
703
12
13.20
13.20
.54
.57
14.20
14.00 4.50
73.83
76.1
886
913
16
17.40
17.40
.62
.65
18.40
18.40 4.50
112.58
117.2
1351
1406
20
21.60
21 .60
.6G
.75
22.85
22.60 4.50
153.83
166.7 1846! 2000
24
25.80
25.80
.76
.82
27.05
26.80 5.00
206.41
224.0 2477; 2688
30
31 .74
32.00
.85
1 .00
32.99
33.00 5.00
284.001323.9
3408 3887
36
37.96
38.30
.95
1.05
39.21
39.30 5.00
379.25 442.7 4551 5312
42
44.20 44.50
1 .07
1 .26
45.45
45.50 5.00
497.66 581 .3 5972 6975
48
50.50 50.80
1.26
1.38
51 .75i 51 .80 5.00
663.50! 739. 6 7962 8875
The Standard pipe listed above conforms to the standard adopted by
the American Gas Institute in 1911. The heavy pipe given is not in-
cluded in the A. G. I. standards but is used by many gas engineers for
service under paved streets with heavy traffic, or where subsoil condi-
tions make the heavier pipe desirable. Pipes are made to lay 12 ft.
length. Weights per foot include bell and bead. Length of bead =
0.75 in. for 4- and 6-in. pipe; 1.00 in. for 8- to48-in. pipe. Thickness of
bead = 0.19 in. for 4- and 6-in. pipe; 0.25-in. for 8- to 48-in. pipe.
LEAD REQUIRED FOR CAST IRON PIPE JOINTS. 199
Standard Flanged Cast Iron Pipe for Gas.
(United Cast Iron Pipe & Foundry Co., 1914, Am. Gas. Inst. Std., 1913.)
Nomi-
nal
Thick-
ness,
Flange
Diam.,
Flange
Thick-
Bolt
Circle
Bolts
Wgt.
Single
Approx. Wgt.,
Lb.
Diam.,
In.
In.
In.
ness,
In. '
No.
Size,
In.
r lange,
Lib.
Foot.
Lgth.
4
0.40
9.00
0.72
7.125
~T~
0.625
8.19
18.62
223
6
.43
11.00
.72
9.125
4
.625
10.46
29.01
348
8
.45
13.00
.75
11 .125
8
.625
12.65
40.05
481
10
.49
16.00
.86
13.75
8
.625
22.53! 54.71
656
12
.54
18.00
.875
15.75
8
.625
25.96 71.34
856
16
.62
22.50
.00
20.00
12
.75
39.68
108.61
1303
20
.68
27.00
.00
24.50
16
.75
51.10! 147.95
1775
24
.76
31 .00
.125
28.50
16
.75
65.00
197.38
2369
30
.85
37.50
.25
35.00
20
.875
96.70
273.45
3281
36
.95
44.00
.375
41 .25
24
.875
132.26
366.67
4400
42
1.07
50.75
.56
47.75
28
1.00
186.83 483.48
5802
48
1 .26
57.00
.75
54.00
32
1 .00
235.23
647.36
7768
Pipe is made in 12-ft. lengths, and faced Vie in. short for gaskets.
Weight per foot includes flanges. Flanges are Am. Gas. Inst., and are
different from the "American 1914" standard for water and steam pipe.
Pipes heavier than above may be made by reducing internal diameters.
Threaded Cast Iron Pipe.
(U. S. Cast Iron Pipe & Foundry Co., 1914.)
Nominal diam., in
3
4
6
8
10
12
Actual outside diam., in
3.96
5.00
7.10
9.30
11 40
13.50
Thickness, in., Class B
0.42
0.45
0.48
0.51
0.57
0.62
Wt. per foot, Class B . .
14.6
20.1
31 .2
43.9
60.5
78.9
Thickness in Class D
0 48
0 52
0 55
0 60
0 68
0 75
Wt. per foot, Class D
16.4
22.8
35.3
51.2
71.4
93.7
Quantity of Lead Required for Cast Iron Pipe Bell and Spigot Joints.
(U. S. Cast Iron Pipe & Foundry Co., 1914.)
S
Depth of Joint
i
Depth of Joint
§ c
2 In. 1 2 1/4 In. | 2 1/2 In. | Solid.
§«
2 In.
2 1/4 In. | 2 1/2 In. | Solid.
p
Approx. Weight of Lead in Joint.— Lb.
3~
Approx. Weight of Lead in Joint. — Lb.
3
6.00
6.50 7.00
10.25
74
44.00 48.00 52.50
95.00
4
7.50
8.00
8.75
13.00
30
54.25
59.50
64.75
117.50
6
10.25
11.25
12.25
18.00
36
64.75
71 .00
77.25
140.25
8
13.25
14.50
15.75
23.00
42
75.25
78.75
85.50
155.25
10
16.00
17.50
19.00
31 .00
48
85.50
94.00
102.25
202.25
12
19.00
20.50
22.50
36.50
54
97.60
107.10
116.60
238.60
14
22.00
24.00
26.00
38.50
60
108.30
118.80
129.50
255.50
16
30.00
33.00
35.75
64.75
72
128.00
140.50
153.00
302.50
18
33.80
36.90
40.00
72.00
84
147.00
161 .50
175.60
348.00
20
37.00
40.50
44.00
80.00
The above table gives the calculated weight of lead required for pipe
joints both with and without gasket. Weight of lead taken at 0.41
Ib. per cu. in. Allowance has been made for lead to project beyond the
face of the bell for calking. Pipe specifications allow lead space to vary
from those given in tables, hence the weights of lead may vary ap-
proximately 11 to 16 per cent from those given above,
200
MATERIALS
Cast-iron Pipe Columns, Weight and Safe Loads, Pounds.
(U. S. Cast Iron Pipe and Foundry Co., 1914.)
T onrrfVi
4-Inch Pipe.
6-Inch Pipe.
8-Inch Pipe.
1 0-Inch Pipe.
ijGngtn.
Wgt.
Load.
Wgt.
Load.
Wgt.
Load.
Wgt.
Load.
6 ft. 0 in.
160
56070
245
100100
359
164410
428
224200
6 6
171
54130
262
98310
385
162400
464
222300
7 0
183
52190
280
96270
410
160350
500
220300
7 6
194
50250
298
94100
436
1 58200
535.
218300
8 0
206
48320
316
92040
462
1 56000
571
216200
8 6
217
46440
333
89820
487
153600
607
213900
9 0
229
44590
351
87620
513
1 5 1 200
643
211600
9 6
240
42800
368
85450
539
148760
678
209300
10 0
251
41050
386
83260
564
146260
714
206900
10 6
262
39360
404
81040
590
143700
750
204500
11 0
274
37730
421
78840
615
141160
785
202200
11 6
285
36160
439
76700
642
138570
821
199800
12 0
297
34670
457
74580
667
135920
857
197400
12 6
308
33220
474
71600
692
133340
893
195000
Base and Top Castings.
Ins. square 10
12
14
16
Wt., Ibs. 65
100
145
200
Add weight of base and top castings f9r complete weight of column.
Loads are based on Gordon's formula, with a factor of safety of 8.
Weight of Open End Cast-Iron Cylinders.
Cast iron = 450 Ibs. per cubic foot.
Pounds per Lineal Foot.
Thick.
Wgt.
Thick.
Wgt.
Thick.
Wgt.
Thick.
Wgt.
Bore.
of
Metal.
per
Foot.
Bore.
of
Metal.
per
Foot.
Bore.
of
Metal.
Foot.
Bore.
of
Metal.
per
Foot.
In.
In.
Lb.
In.
"in*.
Lb.
In.
In.
Lb.
In.
In.
Lb.
4
3/8
16.1
11
V2
56.5
17
V8
153.6
24
7/8
213.7
!/2
22.1
5/8
71.3
18
5/8
114.3
1
245.4
5/8
28.4
3/4
86.5
3/4
138.1
26
3/4
197.0
5
3/8
19.8
12
V2
61.4
7/8
162.1
7/8
230.9
1/2
27.0
5/8
77.5
19
5/8
120.4
1
265.1
5/8
34.4
3/4
93.9
3/4
145.4
28
3/4
211.7
6
3/8
23.5
13
V2
66.3
7/8
170.7
7/8
248.1
1/2
31.9
5/8
83.6
20
5/8
126.6
1
284.7
5/8
40.7
3/4
101.2
3/4
152.8
30
7/8
265.2
7
3/8
27.2
14
V2
71.2
7/8
179.3
304.3
V2
36.8
5/8
89.7
21
5/8
132.7
U/8
343.7
5/8
46.8
3/4
108.6
3/4
160.1
32
7/8
282.4
8
3/8
30.8
15
5/8
95.9
7/8
187.9
1
324.0
1/2
41.7
3/4
116.0
22
5/8
138.8
H/8
365.8
5/8
52.9
7/8
136.4
3/4
167.5
34
7/8
299.6
9
V2
46.6
16
5/8
102.0
7/8
196.5
1
343.7
5/8
59.1
3/4
123.3
23
3/4
174 9
H/8
388.0
3/4
71.8
7/8
145.0
7/8
205.1
36
7/8
316.6
TO
1/2
51.5
17
5/8
108.2
235.6
]
363.1
5/8
65.2
3/4
130.7
24
8/4
182.2
H/8
410.0
3/4
79.2
The weight of two flanges may be reckoned = weight of one foot,
WELDED PIPE.
201
WROUGHT-IRON (OR STEEL) WELDED PIPE.
For discussion of the Briggs Standard of Wrought-iron Pipe Dimen-
sions, see Report of the Committee of the A. S. M. E. in "Standard
Pipe and Pipe Threads," 1886. Trans., Vol. VIII, p. 29. The diameter
of the bottom of the thread is derived from the formula D —
(0.05D+ 1.9) x i, in which D = outside diameter of the tubes, and n
the number of threads to the inch. The diameter of the top of the
thread is derived from the formula 0.8 ^ X 2 + d, or 1.6 i + d, in which
d is the diameter at the bottom of the thread at the end of the pipe.
The sizes for the diameters at the bottom and top of the thread at the
end of the pipe are as follows :
Standard Pipe Threads.
Nom-
m^3
Diam.
Diam.
Nom-
OS'S
Diam.
Diam.
inal
ijl
of Pipe
of Pipe
inal
6f Pipe
of Pipe
Size.
Ex-
at Root
at Top
Size.
Ex-
QJ*""1
at Root
at Top
ternal
-C ^
of
of
ternal
S cD
of
of
Diam.
Ha
Thread.
Thread.
Diam.
Hft
Thread.
Thread.
1/8
0.405
27
0.3339
0.3931
5
5.563
8
5.2907
5.4907
1/4
.540
18
.4329
.5218
6
6.625
8
6.3460
6.5460
3/8
.675
18
.5676
.6565
7
7.625
8
7.3398
7.5398
1/2
.840
14
.7013
.8156
8
8.625
8
8.3336
8.5336
3/4
1.050
14
.9105
1.0248
9
9.625
8
9.3273
9.5273
1
1.315
111/2
1 . 1 440
1.2832
10
10.750
8
10.4453
10.6453
H/4
1.660 111/2
1 .4876
1 .6267
11
11.750
8
11.4390
11.6390
H/2
1.900;i1l/2
1.7265
1 .8657
12
12.750
8
12.4328
12.6328
2
2.375I1U/2
2.1995
2.3386
13
14.000
8
13.6750
13.8750
21/2
2.875 8
2.6195
2.8195
14
15.000
8
14.6688
14.8688
3
3.500 8
3.2406
3.4406
15
16.000
8
15.6625
15.8625
31/2
4.000 8
3.7375
3.9375
170.D.
17.000
8
16.6563
16.8563
4
4.500 8
4.2343
4. 4343
18O.D.
18.000
8
17.6500
17.8500
4l/2
5.000 8
4.7313
4.9313
20 O.D.
20.000
8
19.6375
19.8375
Tap Drills for Pipe Taps (Briggs' Standard) .
Size of
Tap,
In.
Size of
Drill,
In.
Size of
Tap, .
In.
Size of
Drill,
In.
Size of
Tap,
In.
Size of
Drill,
In.
Size of
Tap,
In.
Siz^of
Drill,
In.
1/8
V4
3/8
1/2
21/64
29/64
19/32
23/32
3/4
1 1/4
1 V2
,%«
1 3/16
1 15/32
1 23/32
2
21/2
31/2
2 3/16
2H/16
3 5/16
313/ifi
4
41/2
6
4 3/16
4H/16
5 1/4
6 5/ii
Having the taper, length of full-threaded portion, and the sizes at
bottom and top of thread at the end of the pipe, as given in the table,
taps and dies can be made to secure these points correctly, the length
of the imperfect threaded portions on the pipe, and the length the tap
is run into the fittings beyond the point at which the size is as given, or,
in other words, beyond the end of the pipe, having no effect upon the
standard. The angle of the thread is 60°, and it is slightly rounded off
at top and bottom, so that, instead of its depth being 0.866 its pitch, as
is the case with a full V-thread, it is 4/5 the pitch, or equal to 0.8 -r- n, n
being the number of threads per inch.
Taper of conical tube ends, 1 in 32 to axis of tube = % inch to the
foot total taper.
The thread is perfect for a distance (L) from the end of the pipe, ex-
pressed by the rule, L = (0.8 D + 4.8) -j-n; where D = outside diameter
202
MATERIALS.
•adtj jo
•urj auQ ui
D -s *h
Od
i
I
m-
ce
^co,fn-«»-moxpvoorsoo'^- — a
gSRS^Js-0^
•p-v
fe^c
Ov !>, *X V CO CN CN <S — — — ' O
.
M O — »— <N CO •
>..
!>. fN vO —
cr°
'->
o oo oo i-> a» — —
PUB
-
o — r>.ooo — oo — «
spug
qouj jad
>i OO OO if«- — — -- OOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOO
ssau^oiqj,
SO^CN
"\ v/*l — OO
•^ CS <N — —
f in so r>i O"-
P-HO — — — — CN CN en -t- ftrMn so r*N oo oo ON o o o — cNcs^inso
t±2^
I
QPQ
doc
:££8
WELDED PIPE.
203
in inches. Then come two threads, perfect at the root or bottom,
but imperfect at the top, and then come three or four threads imperfect
at both top and bottom. These last do not enter into the joint at all,
but are incident to the process of cutting the threads. The thickness
of the pipe under the root of the thread at the end of the pipe = 0.0175
D + 0.025 in.
Briggs' standard gages are made by Pratt & Whitney Co., Hartford,
Conn.
Standard Welded Pipe. — The permissible variation in weights is 5%
above and 5% below those given in the table on the opposite page.
Pipe is furnished with threads and couplings, and in random lengths
unless otherwise ordered. Weights are figured on the basis of one
cubic inch of steel weighing 0.2833 lb., and the weight per foot with
threads and couplings is based on a length of 20 feet, including the
coupling, but shipping lengths of small sizes will usually average less
than 20 feet. Taper of threads is % inch diameter per foot length for
all sizes. The weight of water contained in one lineal foot is based
on a weight of 62.425 pounds per cubic foot, which is the weight at its
maximum density (39.1° F.)
The steel used for lap-welded pipe has the following average analysis
and physical properties:
El. Tens. Elong.
C Mn "' S P Lim. Str. in 8 in.
Bessemer 0.07 0.30 0.045 0.100 36,000 58,000 22%
Open-hearth 0.09 0.40 0.035 0.025 33,000 53,000 25%
Extra Strong~Plpe. (National Tube Company, 1915)
.
Length of
* bc-w
Diameter.
i
^J
Circum-
ference.
Transverse Area.
Pipe per
Sq. Foot.
sfj
.
41
||
1
9
||
ll
t< £
bi
0)
J
J
sUO
53
W
&
s
^
&
£
W
^
^
Hw
&W
J
In.
In.
In.
Lb.
In.
In.
Sq.In.
Sq. In.
Sq.In
Ft.
Ft.
Ft.
Va
0.405
0.215
.095
0.314
1.272
0.675
0.129
0.036
0.093
9.431
17.766
3966.393
1/4
.540
.302
.119
.535
1.696
.949
.229
.072
.157
7.073
12.648
2010.290
3/8
.675
.423
.126
.738
2.121
1.329
.358
.141
.217
5.658
9.030
1024.689
1/2
.840
.546
.147
1.087
2.639
1.715
.554
.234
.320
4.547
6.995
615.017
' 3/4
1.050
.742
.154
1.473
3.299
2.331
.866
.433
.433
3.637
5.147
333.016
1.315
.957
.179
2.171
4.131
3.007
1.358
.719
.639
2.904
3.991
200.193
1 1/4
1.660
1.278
.191
2.996
5.215
4.015
2.164
1.283
.881
2.301
2.988
112.256
U/2
1.900
1.500
.200
3.631
5.969
4.712
2.835
1.767
1.068
2.010
2.546
81 .487
2
2.375
1.939
.218
5.022
7.461
6.092
4.430
2.953
1.477
1.608
1.969
48.766
21/2
2.875
2.323
.276
7.661
9.032
7.298
6.492
4.238
2.254
1.328
1.644
33.976
3
3.500
2.900
.300
10.252
10.996
9.111
9.621
6.605
3.016
1.091
1.317
21.801
31/2
4.000
3.364
.318
12.505
12.566
10.568
12.566
8.888
3.678
0.954
1.135
16.202
4
4.500
3.826
.337
14.983
14.137
12.020
15.904
1 1 .497
4.407
.848
0.998
12.525
41/2
5.000
4.290
.355
17.611
15.708
13.477
19.635
14.455
5.180
.763
.890
9.962
5
5.563
4.813
.375
20.778
17.477
15.120
24.306
18.194
6.112
.686
.793
7.915
6
6.625
5.761
.432
28.573
20.813
18.099
34.472
26.067
8.405
.576
.663
5.524
7
7.625
6.625
.500 38.048
23.955
20.813
45.664
34.472
11.192
.500
.576
4.177
8
9
8.625
9.625
7.625
8.625
.500 43.388
.50048.728
27.096
30.238
23.955
27.096
58.426
72.760
45.663
58.426
12.763
14.334
.442
.396
.500
.442
3.154
2.465
10
10.750
9.750
.500 54.735 33.772
30.631
90.763
74.662
16.101
.355
.391
1.929
11
11.750
10.750
.50060.07536.914
33.772
108.434
90.763
17.671
.325
.355
1.587
12
12.750 11.7*0
.50065.415
40.055
36.914
127.676
108.434
19.242
.299
.325
1.328
13
14. 000 Si 3. 000
.50072.091
43.982
40.841
153.938
132.732
21.206
.272
.293
1.085
14
15.000' 14.0001 .500 77.431 147.124
43.982
176.715
153.93822.777
.254
.272
0.935
15
16.000! 15.0001 .500182.771 50.265
47.124
201 .062
176.715l24.347
.238
.254
.815
The permissible variation in weight is 5% above and 5% below.
Furnished with plain ends! and in random lengths unless otherwise
ordered.
204
MATERIALS,
Double Extra Strong Pipe. (National Tube Company, 1915.)
Diameter.
1
li
3
Circum-
ference.
Transverse Area.
Length of
Pipe per
Sq. Foot.
J..&
*-M
1
i*
H
i"
Thickn
s
^
&
11
h-t
il
* a
H
6-d
£*
HH
-3
%
%
-1
a
Int.
Surface.
O.SU
43 C «
|35
1
In.
In.
In.
Lb.
In.
In.
Sq.In Sq.In
Sq.In
Ft.
Ft.
Feet.
1/2
0.840
0.2520.294
1.714 2.639
0.792
0.554
0.050
0.504
4.547
15.157
2887.165
3/4
1.050
.4341 .308
2.440 3.299
1.363
.8661 .148
.718
3.637
8.801
973.404
1.315
.599 .358
3.659 4.131
1.882
1.358
.282
1.076
2.904
6.376
510.998
U/4
1.660
.896
.382
5.214 5.215
2.815
2.164 .630
1.534
2.301
4.263
228.379
H/2
1.900
1.100
.400 6.408; 5.969
3.456
2.835
.950
1.885
2.010
3.472
151.526
2
2.375
1.503
.436 9.029 7.461
4.722
4.430
1.774
2.656
1.608
2.541
81.162
21/2
2.875
1.771
.552.13.695! 9.032
5.564
6.492 2.464
4.028
1.328
2.156
58.457
3
3.500
2.300 .60018.58310.996
7.226
9.621
4.155
5.4t>6
1.091
1.660
34.659
31/2
4.000
2.728! .63622.850 12. 5b6
8.570
12.566 5.845
6.721
0.954
1.400
24.637
4
4.500
3.152 .67427.541 14.137
9.902
15.904
7.803
8.101
.848
1.211
18.454
41/2
5.000
3.5801 .71032.53015.708
1 1 .247
19.635
10.066
9.569
.763
1.066
14.306
5
5.563
4.063 .75038.55217.477
12.764
24.306
12.966
1 1 .340
.686
0.940
11.107
6
6.625
4.897 .86453.16020.813
15.384
34.472
18.835
15.637
.576
.780
7.646
7
7.625
5.875
.875 63.079 23.955
18.457
45.664
27.109
18.555
.500
.650
5.312
8
8.625
6.875 .875 72 424127.096 21 .598 58.426
37.12221.304 .442 .555
3.879
The permissible variation in weight is 10% above and 10% below.
Furnished with plain ends and in random lengths unless otherwise
ordered.
Standard Boiler Tubes and Flues — Lap- Welded.
(National Tube Company, 1915.)
Diameter.
1
1
Circum-
ference.
Transverse Area.
Length of Tube
per Sq. Foot.
|:K
jN
QjlS
z*
.5? §3
ii
JB
fa
£-3
3
8
§
fig
*O 4J O
"5 § S
<§§
1°
1
f
ia
£j
Ia
3*
B
a
l|
*l
J0'
In.
In.
In.
Lb.
In.
In.
Sq.In.
Sq. In.
Sq.In
Ft.
Ft.
Ft.
Ft.
13/4
1.560
0.095
1.679
5.498
4.901
2.405
1.911
.494
2.182
2.448
2.315
75.340
1.8.0
.095
1.932
6.283
5.686
3.142
2.573
.569
1.90912.110
2.010
55.965
21/4
2.0oO
.095
2.186
7.0o9
6.472
3.976
3.333
.643
1 .697 1 .854
1.775
43.205
21/2
2.282
.109
2.783
7.854
7.109
4.909
4.090
.819
1.527
1.673
1.600
35.208
23/4
2.532
.109
3.074
8.639
7.955
5.940
5.036
.904
1.388
1.508
1.448
28.599
3
2.782
.109
3.365
9.425
8.740
7.0b9
6.079
.990
1.273
1.373
1.323
23.690
31/4
3.010
.120
4.011
10.210
9.456
8.296
7.116
1.180
1.175
1.269
1.222
20.237
31/2
3.260
.120
4.331
10.996
10.242
9.621
8.347
1.274
1.091
1.171
1.131
17.252
33/4
3.510
.120
4.652
1 1 .781
1 1 .027
1 1 ,045
9.677
1.368
1.018
1.088
1.053
14.882
4
3.732
.134
5.532
12.5o6
1 1 .724
12.5ob
10.939
1.627
0.954
.023
0.989
13.164
4l/2
4.232
.134
6.2t8
14.137
13.295
15.904
14.0b6
1.838
.848
0.902
.875
10.237
5
4.704
.148
7.6o9
15.708
14.776
19.b35
17.379
2.256
.763
.812
.787
8.286
6
5.670
.165
10.282
18.850
17.813
28.274
25.249
3.025
.636
.673
.655
5.703
7
6.670
.165
12.044
21.991
20.954
38.485
34.942
3.543
.545
.572
.559
4.12t
8
7.670
165
13.807
25.133
24.096
50.265
46.204
4.061
.477
.498
.487
3.117
9
8.640
.180
16.955
28.274
27.143
63.617
58.629
4.988
.424
.442
.433
2.456
10
9.594
.203
21 .240
31.416
30.140
78.540
72.292
6.248
.381
.398
.390
1.992
11
10.560
.220
-25.329 34.5^8
33.175
95.033
87.582
7.451
.347
.361
.354
1.644
12
1 1 .542
.229
28.788 37.699
36.2oO
113.097
104.629
8.468
.318
.330
.324
1.376
13
12.524
.238
32.439 40.841
39.3*5 132.732
123.190
9.542
.293
.304
.299
1.169
14
13.504
.248
36.424
43.982
42.424
153.938
143.224
10.714
.272
.282
.277
1.005
15
16
14.482
15.460
.25940.775
.270145.359
47.124
50.265
45.497
48.509
176.715
201.062
164.721
187.719
1 1 .994
13.343
.254
.238
.263
.247
.259
.242
0.874
.767
LAP-WELDED STEEL PIPE.
205
Weights and Bursting Strength of Lap-Welded Steel Pipe.
(American Spiral Pipe Works, Chicago, 1911.)
20-Pt. Lengths, Plain Ends without Connections. Thicknesses in
U. S. Standard Gage or Inches. Bursting Strength in Lb. per Sq. Jn.
Internal Pressure.
Inside Dia.,
Ins.
Thickness,
Ins.
d
i<
r
Bursting
Strength.
Inside Dia.,
Ins.
Thickness,
Ins.
3
s*f
ft§
.pfc
^
Bursting
Strength.
Inside Dia.,
Ins.
Thickness,
Ins.
a
M
r
Bursting
Strength.
12
10G
19.3
1172
28
3/4
244
2678
42
1/4
119
595
"
3/16
25.8
1562
"
329
3570
"
1/2
239
1190
11
1/4
34.6
2083
"
H/4
416
4462
"
3/4
362
1784
14
10G
22.4
1005
30
3/16
64
625
*•
1
486
2380
"
V4
40.2
1785
"
1/4
85
833
"
1 1/4
612
2976
"
3/8
61.0
2678
"
1/2
172
1666
44
1/4
124
568
11
1/2
82.0
3568
"
3/4
261
2500
"
1/2
250
1136
16
10G
25.6
879
"
352
3328
"
3/4
378
1705
"
I/I
45.8
1562
"
H/4
444
4160
"
1
508
2277
"
3/8
69.4
2344
32
3/16
68
586
"
U/4
640
2840
"
1/2
93.5
3124
"
1/4
91
781
48
V4
135
520
M
5/8
118.0
3904
"
V2
183
1562
"
1/2
273
1040
18
10G
28.7
781
"
3/4
278
2344
"
3/4
412
1562
M
1/4
51.4
1388
"
1
374
3125
"
553
2080
"
3/8
77.8
2082
"
U/4
472
3906
"
U/4
696
2604
"
1/2
104.7
2776
34
3/16
72
551
50
1/4
141
500
"
5/8
132.0
3472
"
1/4
96
735
"
1/2
284
1000
20
10G
31.9
703
*•
1/2
194
1470
"
3/4
429
1500
M
1/4
57.0
1250
"
3/4
294
2206
«
1
576
2000
"
1/2
116.2
2500
"
1
396
2942
"
11/4
724
2500
•*
3/4
177.0
3736
"
U/4
500
3678
54
1/4
152
463
22
10G
35.0
639
36
3/16
76
520
1/2
306
926
"
1/4
62.6
1136
"
1/4
102
694
«
3/4
462
1390
"
1/2
127.0
2272
"
1/2
206
1388
"
1
620
1852
"
3/4
194.0
3410
«
3/4
311
2080
"
U/4
780
2315
"
1
262.0
4555
'•
419
2776
60
V4
169
416
24
10G
38.0
586
«
U/4
528
3472
1/2
340
832
**
V4
68.0
1041
38
s/rt
80
493
'«
3/4
513
1250
"
1/2
138.0
2082
«
1/4
107
658
«
688
1664
"
3/4
210.0
3124
"
1/2
217
1316
"
U/4
864
2080
M
1
284.0
4160
*<
3/4
328
1972
66
1/4
186
379
26
3/16
55.0
721
"
441
2632
"
!/2
374
758
1/4
74.0
961
««
U/4
556
3288
"
3/4
563
1132
'*
1/2
150.0
1922
40
3/16
84
467
"
1
755
1516
"
3/4
227.0
2885
"
1/4
113
625
'«
U/4
948
1892
"
307.0
3847
"
1/2
228
1250
72
V4
203
347
"
H/4
388.0
4809
«'
3/4
345
1868
1/2
407
694
28
3/16
60.0
669
"
1
464
2500
*«
3/4
614
1040
"
V4
80.0
892
"
U/4
584
3124
«<
822
1388
"
1/2
161 .0
1784
42
3/16
89
446
"
U/4
1032
1736
For dimensions of extra heavy rolled steel flanges for above pipe,
see table page 211.
Square Pipe, external size, 7/g, 1, H/4, li/2, Hl/ie, 2, 21/2, 3 in.
Rectangular Pipe, external size, 1 1/4 X 1, 11/2X1 V4, 2X1 1/4,
2X1 1/2, 21/2X1 1/2, 3X2.
Two or more thicknesses of each size.
Pipe Specialties. — Hand railings and their fittings; ladders with flat
or round pipe bars and runners; seamless cylinders, with flat, domed,
disked, or necked ends; special shapes for automobiles, to replace drop
forgings ; tapered tubes, and other specialties are illustrated in National
Tube Co.'s Book of Standards.
206
MATERIALS.
Special Sizes of Lap-welded Pipe — Boston Casing. (National Tube Co.)
£ N
§1
•« 8
ss
tfiS
5. a
li
68*
!'!
M •
!§ 8
as
ll
£ 1
la
Is
ga
Is
SQ
e"
la
&*
E-i C
IJ
*Q
w
E-< fl
2
21/4
0.100
4l/2
43/4
0.145
55/8
6
0.224
81/4
85/s
0.217
21/4
21/2
.108
41/2
43/4
.193
55/8
6
.275
81/4
85/8
.264
21/2
23/4
.113
43/4
5
.152
61/4
65/8
.169
85/8
9
.196
23/4
3
.116
5
51/4,
.153
61/4
65/s
.185
95/8
10
.209
3
31/4
.120
5
51/4
.182
65/8
7
.174
105/8
11
.224
31/4
31/2
.125
5
51/4
.182
65/8
7
.231
115/8
12
.243
31/2
33/4
.129
5
51/4
.241
7V4
75/8
.181
121/2
13
.259
33/4
4
.134
5
51/4
.301
75/8
8
.186
131/2
14
.276
4
41/4
.138
53/18
5l/2
.154
75/8
8
.236
141/2
15
.291
41/4
4l/2
.142
55/8
6
.164
81/4
85/8
.188
15l/2
16
.302
41/4
4l/2
.205
55/8
6
.190
Other sizes of lap- welded pipe: Inserted Joint Casing, external
diameters same as Boston Casing, with the least thickness. The 5 5/g
casing is made 0.164 and 0.190 in. thick. California Diamond X Casing,
sizes 5 5/8 to 15 1/2, all heavier than Boston. Oil Well Tubing, 11/4 to 4 in. ;
Bedstead Tubing, 3/8 to 3 in.; Flush Joint Tubing, 3 to 18 in.; Allison
Vanishing Thread Tubing, 2 to 8 in., ends upset, 11/4 to 8 in., ends not
upset; Special Rotary Pipe, 2 1/2 to 6 in.; South Penn Casing, 53/i6 to
12 1/2 in. ; Reamed and Drifted Pipe, 2 to 6 in. ; Air-line Pipe, 1 1/2 to 6 in. ;
Drill Pipe, 4 to 6 in. ; Dry-kiln Pipe, 1 and 1 1/4 in. ; Tuyere Pipe, 1 and
H/4 in.
TUBULAR ELECTRIC LINE POLES.
For railway work the poles most used are 30 ft. long, and are com-
posed of 7-in., 6-in., and 5-in. pipe. Anchor poles are usually 8-in.,
7-in., and 6-in., but often they are made of larger pipe. Full directions
for designing such poles are given in the National Tube Co.'s Book of
Standards, which contains 38 pages of tables of dimensions, load, de-
flection, etc., of poles of different sizes and weights.
PROTECTIVE COATINGS FOR PIPE.
(1) Galvanizing — The pipe cleaned from scale and rust by pickling
in warm dilute sulphuric acid, washed, immersed in an alkaline bath,
dried and immersed in molten zinc. (2) Bituminous Coating — The
cleaned, dried and warmed pipe is dipped in a bath of refined coal tar
pitch, free from water and the lighter oils, at a temperature not below
212°, and then baked. (3) "National Coating." — The bituminous
coated pipe, after baking is wrapped with a strip of fabric saturated
with the hot compound, the edges of the fabric overlapping.
VALVES AND FITTINGS.
(From Information Furnished by National Tube Co., 1915.)
Wrought pipe is usually connected in one of three ways, screwed,
flanged or leaded joints.
Screwed. — Pipe in sizes from i/g m. to 15 in. inclusive is regularly
threaded on the ends, and is connected by means of threaded couplings.
Flanged. — Pipe in sizes 11/4 inches and larger is frequently connected
by drilled flanges bolted together, the joint being made by a gasket
between the flange faces.
Flanges are attached to the pipe in a variety of ways. The most
common method for sizes of. pipe from U/4 in. to 15 in. inclusive
is by screwing them on the pipe. Many prefer peened flanges for
pipe larger than 6 in. The peened flange is shrunk on the end of
the pipe, and the latter is then peened over or expanded into a recess
in the flange face. Steel flanges are also welded to pipe and loose
flanges are used by flanging over the pipe ends. When no method
of attaching is stated, screwed flanges are always furnished.
VALVES AND FITTINGS. 207
Working Pressures. — All valves and fittings are classified, as a rule,
under five general headings, representing the working pressures for
which they are suitable, as follows: Low Pressure, up to 25 pounds
per square inch. Standard, up to 125 pounds per square inch. Medium
Pressure, from 125 pounds to 175 pounds per square inch. Extra
Heavy, from 175 pounds to 250 pounds per square inch. Hydraulic,
for high pressure water up to 800 pounds per square inch.
The following table gives the names of different valves and fittings,
the material of which they are made, and the regular sizes manu-
factured for the different pressures (L, low; S, standard; M, medium;
E, extra heavy ; H , hydraulic) :
SCREWED FITTINGS.
Malleable Iron S, E, H, sizes 1/8 to 8 in.
Cast Iron S, E, 1/4 to 12 in.
FLANGED FITTINGS.
Cast Iron L, S, E, H, sizes 2 in. and larger.
GATE VALVES.
Brass L S M E If up to 3 in.
Iron Body, sizes. . 12 to 48 2 to 30 2 to 18 1 1/4 to 24 H/2 to 12 in.
GLOBE AND ANGLE VALVES.
Brass S, i/s to 4; M, 1/4 to 3; E, 1/2 to 3; H, 1/2 to 2
Iron Body S, 2 to 12; E, 2 to 12
CHECK VALVES.
Brass S, M, E, H, sizes l/s to 3 in.
Iron Body L, S, M , E, H, ' 2 to 12 in.
COCKS, STEAM AND GAS.
Brass sizes 1/4 to 3 in.
Iron Body * 1/2 to 3 in.
Nipples. — Nipples are made in all sizes from i/g in. to 12 in. in-
clusive, in all lengths, either black or galvanized, and regular right-
hand or right- and left-hand threads. (For table of nipples see National
Tube Co.'s Book of Standards.) Long screws or tank nipples are made
of extra heavy pipe because there is less danger of crushing or splitting
them when screwing up.
Screwed Fittings — Malleable Iron. — Standard Malleable Iron Fittings
are made both plain and beaded. The former are generally used for
low pressure gas and water, as in house plumbing and railing work. The
beaded is the standard steam, air, gas, or oil fitting. Beaded fittings,
in sizes 4 in. and smaller, are made in nearly every useful combination of
openings. Sizes larger than 4 in. are not usually made reducing except
by means of bushing. Extra heavy and hydraulic malleable iron
fittings are flat bead, or banded.
Screwed Fittings — Cast Iron. — It is not considered good practice to
use screwed cast-iron fittings of any kind in sizes larger than 6 in.
Flanged Fittings. — The flanges of the low pressure and standard are
the same with the exception of the flange thickness, which is less on the
low pressure. These flanges are known as the American Standard.
(See pp. 209, 210.)
There is no recognized standard for flanges in hydraulic work.
Unions. — Unions are usually classified under two headings, Nut unions
and Flange unions. Nut unions are commonly used in sizes 2 in. and
smaller, and flange unions in sizes larger than 2 in. However, many
manufacturers make nut unions as large as 4 in. and flange unions
smaller than 2 in.
Nut unions are made in malleable iron, brass, and malleable iron,
and ail brass. The all malleable iron union (lip union) is the standard
malleable iron union of the trade and requires a gasket. The brass
and malleable iron union is a better union, because no gasket is re-
quired and there is no possibility of the parts rusting together. The
pipe end of this union which carries an external thread, called the
208 MATERIALS.
thread end, upon which the ntit or ring screws, is made of brass, and the
other pipe end (called the bottom) and nut ring are made of malleable
iron. The seat formed by the brass and iron pipe ends, when brought
together, is truly spherical and the harder iron is sure to make a perfect
joint with the softer brass.
All-brass unions are made with a spherical or conical seat, no gaskets
being required. The finished all-brass union is often used where showy
work is desired, such as oil piping for engines, etc.
Flange unions are made of malleable iron, malleable iron and brass,
cast iron, and cast iron and brass.
The type of flange union recommended for standard work is made
with a brass to iron non-corrosive ball joint seat which requires no
gasket to make a tight joint even when the pipe alignment is imperfect.
The flange is loose on the collar, so that the bolts match the holes in
any position.
Valves and Cocks. — The most common means for regulating the flow
of fluids in pipes is by means of valves and cocks, valves being pre-
ferred because of the easier operation and greater reliability. The
common types of valves are straightway or gate, globe, and angle. A
globe valve offers more resistance to the flow of any fluid than the
straightway valve.
Globe and Angle Valves. — Many manufacturers make a globe and
angle valve known as light standard or competition valve, but it is
not recommended for any work except the lowest pressures, or where
the valve will not be often opened or closed.
Cocks. — Among the modern types of cocks is one made with iron
body and brass plug. This cock has an inverted plug with a spring
at the bottom constantly pressing the plug against the seat, which
reseats the plug if it should stick. These cocks are tested to 250 Ib.
cold-water pressure, and 125 Ib. compressed-air pressure under water,
and are recommended for 125 Ib. working pressure.
Blast Furnace Fittings. — Tuyere cocks and tuyere unions used in
blast furnace piping are always made of brass on account of ease in
disconnecting, greater reliability of metal and resistance to corrosion
from the impurities in the water, such as sulphuric acid.
STANDARD PIPE FLANGES (CAST IRON).
The following tables showing dimensions of standard pipe flanges
were adopted by the American Society of Mechanical Engineers, the
Master Steam and Hot Water Fitters' Association, and a committee
representing the manufacturers of pipe fittings. They represent a
compromise between the standards adopted by the American Society of
Mechanical Engineers and the Master Steam and Hot Water Fitters'
Association hi 1912, known as the 1912 U. S. Standard, and the stand-
ards adopted by a conference of manufacturers in July, 1912, known
as the Manufacturers' standard. The new standards, given in the
tables, are called the American Standard, and became effective Jan. 1,
1914. The table of flanges for extra heavy fittings is for working
pressures up to 250 Ib. per sq. in. The table for ordinary fittings is for
working pressures up to 125 Ib. per sq. in. In the tables, the values of
T X T)
stresses in pipe walls were calculated from the formula S = - — .— >
where p = working pressure, Ib. per sq. in., t = thickness of pipe,
in., and r = radius of pipe, in. The highest stress was found to be
2000 Ib. per sq. in. on the 250-lb., 46- and 48-in. pipe walls, giving a
factor of safety of about 10. The desirable thickness of pipe (Col. 2)
is calculated from the formula T = PA* 3° -P + 0.333/1 - -^ Jl.2.
where p = pressure, Ib., per sq. in., 5 = 1800, and d = diameter
of pipe. The minimum thickness in even fractions of an inch is given
in Col. 3. The following approximate formulae were also used for
ordinary fittings: Diam. of bolt circles = 1.10 d + 3. Flange thick-
ness (for pipe diameters 26 to 100 in. inclusive) = 0.0315 d + 1.25.
For extra heavy fittings the formulae are: Bolt circle = 1.171d+3.75;
Flange thickness = 0.0546 d + 1.375 (for sizes 10 to 48 in. inclusive).
American Standard Cast Iron Pipe flanges for Pressures Up to ™
Lb. per Sq. In. (All Dimensions in Inches.)
r r Pipe
£«
Flanges.
Bolts.
fc
Thickness
E •
jj
i
o
Jj
^
£
.S
a£
f-
See Fig. 75,
p. 210
S
&
|i
n &
W OH
!
Q
IS
H
if
0)
g
5
I!
CU *M
g&
A
B
C
1
0.43
7/16
143
4
7/16
I 1/2
3
~4
7/16
0.093
264
9/16
2.12
^9l
U2T
1 1/4
0.44
7/16
178
41/2
1/2
15/8
33/8
4
7/16
0.093
412
9/16
2.38 0.91
L47
H/2
0.45
7/16
214
9/16
13/4
37/8
4
1/2 0.126;
438
5/82.731.00
1.73
2
0.46
7/16
286
6
5/8
2
43/4
4
5/81
0.202
486
3/4!
3.35
1.21
2.14
21/2
0.48
7/16
357
7
11/16
21/4
51/2
4
5/8 0.202
750
3/4 3.88
1.21
2.67
'3
0.50
7/16
428
71/2
3/4
21/4
6
4
5/8 i 0.202
1093
3/4
4.23
1.21
3.02
31/2
0.52
7/16
500
81/2
13/16
21/2
7
4
5/8
0.202
1488
3/4
4.94
1.21
3.73
4
0.53
1/2
500
9
15/16
21/2
71/2
8
5/8 '0.202
972
3/4
2.87
1.21
1.56
41/2
0.55
1/2
562
91/4
15/16
23/8
73/4
8
3/4
0.302
823
7/8^2.96
1.44
1.52
5
0.56
1/2
625
10
15/16
21/2
81/2
8
3/4
0.302
1016
7/8
3.25
1.44
1.81
6
0.60
9/16
667
11
21/2
91/2
8
3/4
0.302
1463
7/8
3.63
1.44
2.19
7
0.63
5/8
700
12l/2
1/16
23/4
103/4
8
3/4 '0.302
1991
7/84.11
1.44
2.67
8
0.66
5/8
800
131/2
1/8
23/4
113/4
8
3/4! 0.302 2600
7/8 4.50
1.44
3.06
9
0.70
H/16
818
15
1/8
3
131/4112
3/4 0.302 2194
7/8|3.43
1 .44 1 .99
10
0.73
3/4
833
16
8/18
3
141/4112
7/8
0.420
1948
3.69
1 .66 2.03
12
0.80
13/16
923
19
1/4
31/2
17
12
7/8
0.420
2805
4.40
1.66
2.74
14
0.86
7/8
1000
21
3/8
31/2
183/4
12
0.5502915
1/8
4.86 1 .88
2.98
15
0.90
7/8 1072
221/4
3/8
35/8
20
16
1
0.5502510
1/83.90 1.88
2.02
16
0.93
1000
231/2
7/16
33/4
21 1/4
16
1
0.550
2856
1/8
4.14
1.88
2.26
18
1.00
1/16
1059
25
9/16
31/2
223/4
16
1 l/s 0.694
2865
1/44.44
2.09
2.35
20
1.07
1/8
1111
271/2
H/16
33/4
25
20
1 1/8
0.694
2829
1/4
3.91
2.09
1.82
22
24
1.13
1.20
3/16
1/4
1158
1200
13/16
7/8
33/4
271/4
291/2
20
20
1 1/4 0.893 2660
l/iO.8933166
1 3/8 4.2612.31
1 3/8;4.62l2.31
1.95
2.31
26
1.27
5/16
1238
341/4
2
41/8
313/4
24
1 1/4
0.893
3096
13/8
4.14
2.31
1.83
28
30
1.33
1.40
3/8
7/16
1273
1304
361/2
383/4
2 1/16
2 1/8
4i/4| 34 '
43/8l 36
28
28
1 l /4 10. 893 1 3078
13/8 1.057 12985
1 3/8 3.81
1/2 4.03
2.31
2.53
1.50
1.50
32
1.47
1/2
1333
413/4J2 1/4
47/8
381/2
28
1 1/2
1.294
2775
5/8
4.31
2.75
1.56
34
1.54
9/16
1360
433/42 5/i6
47/8
401/2
32
H/2
.294274
1 5/8 3.97
2.75
1.22
36
1.60
5/8
1385
46
2 3/8
5
423/4
32
1 1/2
.294
3073
15/8
4.19
2.75
1.44
38
1.67
H/16
1407
483/4
2 3/8
53/8
451/4
32
1 5/8
.515
2924
1 3/4 4.43
2.96
1.47
40
1.73
3/4
1428
503/42 1/2
53/8 471/4
36
1 5/8
.515
2880
13/4
4.11
2.96
1.15
42
1.82
13/16
1448
53
2 5/8
5l/2 49i/2
36
1 5/8
.5153175
13/4
4.31
2.96
1.35
44
1.87
7/8 11467
551/4
2 5/8
5 5/8 51 3/4
40
15/8
.515
3136
1 3/4 4.06
2.96
1.10
46
1.94
115/ie 1484
571/42H/16
55/8 533/4
40
1 5/8
.515
3428
18/4
4.22
2.96
1.26
48
2.00
2
1500
591/212 3/4
53/4
56
44
1 5/8
.515
3393
13/4
3.98
2.96
1.02
50
52
2.07
2.14
21/16
21/8
1515
1530
SI'"
2 3/4
2 7/8
57/8
6
581/444
60 1/2 44
13/4J .746)3195
1 3/4{ .746 3456
7/8|4.14
7/84.30
3.19
3.19
0.95
1.11
54
2.20
23/16 1543 661A3 161/s
62 3/4 44
13/4
.746
3726
17/8
4.45
3.19
1.26
56
2.27
21/4
1555 683/4
3 163/8
65
48
13/4
.746
3674
1 7/8 4.26
3.19
1.07
58
2.34
2 5/16 1567
71
3 1/8 61/2
671/4
48
1 3/4
.746
394
17/fi
4.4013.19
1.21
60
2.41
27/ie 1538
73
3 1/8 61/2
691/4
52
13/4
.7463892
1 7/8 4.19
3.19
1.00
62
2.47
2 1/2 1550
753/4
3 1/4
67/8
713/4
52
1 7/8 12. 051 3538
2
4.34
3.41
0.93
64
2.54
2 9/16
1561
78
3 1/4
7
74
52
7/8
2.051
3770
2
4.48
3.41
1.07
66
2.61
25/8
1572
80
3 3/g
7
76
52
7/82.051
4010
2
4.60
3.41
1.19
68
2.68
2H/16H582
821/43 3/8
71/8
781/4
56
7/8
2.051
3952
2
4.38
3.41
0.97
70
2.74
23/4 11591
84l/213 1/2
71/4
801/2
56
7/8 ! 2. 051
4188
2
4.51
3.41
1.10
72
2.81
213/ie '1600 86 1/2 3 1/2
71/4
821/2
60
7/82.051
4136
2
4.33
3.41
0.92
74
2.88
27/8 1609 881/213 5/8
71/4
841/2
60
7/8
2.051
4368
2
4.44
3.41
1.03
76
2.94
215/16
1617 903/43 5/8
73/8
861/260
7/82.051
4608
2
4.54
3.41
1.13
78
3.01
3
1625 93 -
3 3/4
71/2
883/4
60
2
2.302
432
21/8
4.66
3.63
1.03
80
3.08
31/16
1633 951/4
3 3/4
75/8
91
60
2
2.302
4549
2l/8!4.78
3.63
1.15
82
3.15
31/8
1640 971/23 7/8
73/4 931/4
60
2
2.302
4779
2 l/s 4.90
3.63
1.27
84
3.21
33/16
1647 993/43 7/8
77/8 951/2
64
2
2.302
4702
21/8
4.68
3.63
1.05
86
3.28
31/4
1653 102
4
8 973/4
64
2
2.302
4928
2 l/8,'4.79
3.63
1.16
88
3.35
35/16
1660 1041/4
4
81/8 100
68
2
2.302
4857
2 l/s
4.60
3.63
0.97
90
3.41
33/8
1667s 106 1/2 4 1/8
81/411021/4
6821/s
2.648 4416
21/4
!4.71
3.83
0.88
92
3.48
31/2
16431083/44 l/s
83/8 104 1/2 68 21/8^2.648 4615
2 1/4 4.81
3.83
0.98
94
3.55
39/16
1649 111
4 1/4
8.1/2 1061/468 21/8
2.648
4817
21/4
4.89
3.83
1.06
96
98
100
3.62
3.68
3.75
35/8
3H/16
33/4
1655 1131/4
1661 1151/s
1667J1173/4
41/4 85/81081/216821/43.023440
4 S/g Is 3/4 110 3/4|68 2 1/4 3.023 4587
4 3/8 |87/8;113 |68l2 1/413.023 4776
2 3/8 4.99 4.06
23/85.094.06
23/85.20l4.06
0.93
1.03
1.14
210
MATERIALS.
The last three columns of the table refer to the sketch Fig. 75, and show
the distances between bolt holes, the maximum
space occupied by the nuts and the minimum
t-*-B->j space between adjacent nuts, all measured on
/-f-\ '/i~\! tne cnord- Bolt holes are to straddle the center
/. ; \ — !(--}— V- une' ancl are to De Vs in. larger in diameter than
\ /^CJ\ / the bolts. Standard weight fittings and flanges
j~ ^ are to be plain faced, but extra heavy fittings and
flanges are to have a raised surface i/ie in. high
(On Chord) inside of bolt holes for gaskets. Square head bolts
with hexagonal nuts are recommended, but for
Fig. 75. bolts is/g in. diameter and larger, studs with a nut
on each end may be substituted. Flanges are to
be spot bored for nuts for sizes 32 in. to 100 in. inclusive. For super-
heated steam, steel flanges, fittings and valves are recommended.
American Standard Extra Heavy Cast Iron Pipe Flanges
For Pressures up to 250 Lb. per Sq. In. (All Dimensions in Inches.)
Pipe |d
Flanges.
Bolts.
See Fig. 75,
p. 210.
g
Thickness.^
i
"8
1
.
fe
d
• d
0)
o
8
ij
•sl
•I
w P<
i
Thickn.
8
0 g
| Numbe
IA
> a1
43 co
*» °*
4J> rt
55
PQ
A
B
C
~y
0.45
1/2
250
41/2
H/16
13/4 31/4
4 1/2
0.126
389
5/8
2.29
.00
1.29
H/4
0.47
1/2
312
5
3/4
17/8
33/4 4! 1/2
0.126
609
5/8
2.65
.00
1.65
, U/2
0.49
1/2
375 6
13/18
21/4
41/2 4 5/80.202
547
3/43.17
.21
1.96
0.51
1/2
500
61/2
7/8
21/4
5
4 5/8
0.202
972
3/4
3.53
.21
2.32
21/2
0.53
9/16
555
71/2
| '
21/2
57/g
4
3/4,0.302
1016
7/8
4.15
.442.71
3
0.56
9/16
667
81/4
1 1/8
25/8
65/8! 8
3/4
0.302
731
7/8
2.53
.44
.09
31/2
0.59
9/16
778
9
13/16
23/4| 71/4| 8
3/40.302
995 7/8;2.77
.44
.33
0.61
5/8
800
10
1 1/4
3
77/8
0
3/4
0.302
1300! 7/8
3.01
.44
.57
41/2
0.64
5/8
900
101/2
1 5/16
3
81/2
8
3/t 0.302
1646 7/8 '3. 25
.44
.81
5
0.67
909
11
13/8
3
91/4
8
3/4!0.302|2032
7/8 3.53
.44 2.09
6
0.72
3/4
1000
121/2
1 7/16
31/4
105/8
12
3/4 0.302
1950 7/82.75
1.44
.31
7
0.78
13/16
1077
14
31/2J 11 7/8
12
7/80.420
1909
3.07
1.66
.41
8
0.83
13/16
1230 15
15/8
31/213
12
7/8 0.420 2493
3.36
1.66
.70
9
0.89
7/8
1285
161/4
1 3/4
35/8:i4
12
1
0.550
2410 l/s
3.62
1.88
.74
10
0.94
15/16
1333
171/2
17/8
33/4151/4
16
1
0.5502231 1/8,2.97
1.88
.09
12
1.05
|
1500
201/2
2
41/4
173/4
16
11/80.6942546 1/4 3.46
2.09
.37
14
15
16
1.16
1.21
1.27
U/8
13/16
HA
155523
1579 24 1/2
1600:25 1/2
21/8
23/16
21/4
41/2!20l/420 1 i/sO.6942773 1/4 3.17 2.09
43/4 21 1/2 20 1 1 A 1 0. 893 1 2473! 3/8 3.36 2.31
43/4J22 1/2120 1 1/4 10. 893 2814 3/8|3.52 2.31
.08
.05
.21
18
1.37
13/8
1636
28
23/8
5
243/4
24
1 1/4 0.893 j 2968 3/8|3.232.31
0.92
20
22
1.48H/2 1666301/2
1.5919/16 176033
21/2
25/8
5 1/4 27
5 1/4 29 1/4
24
24
13/8
1 1/2
.057 3096
.295 3058
1/2 3.52 2.53 0.99
5/8 3.81 2.75 .06
24
1 .70 1 5/8
1846
36
23/4
5 3/4 32
24
1 5/8
.515
3110il 3/4
4.18296
.22
26
1.81 1 13/ie
1793381/4
2 13/16
61/8341/2
28
15/8
.5153126 1 3/4 3.86! 2.96 0.9 J
28
1.91
17/8
1866
403/4
215/1663/8
37
28
15/8
.515!3629j1 3/44.142.96
.18
30
2.02
2
1875
43
3
61/2
391/4
28
1 3/4
1.7463615 1 7/8!4.38 3.19
.19
32
2.1321/s. 1882451/4
31/8
65/841 1/228
1 7/82.051
3501 2
4.64,341
.26
34
36
2.2421/4 1 1889 47 1/2
2.35123/s 189450
31/4
33/8
63/4
43i/2
46
28
32
1 7/8 2.051
1 7/82.051
39522
38772
4.873.41
4.503.41
.46
.09
38
2.4627/16 1948521/4
37/ie 71/848
32 1 7/8 2.051
43202
4.703.41
.29
40
42
44
46
48
2.562 9/161953541/2
2.67 2 n/16 1953 57
2.78:213/161955591/1
2.8912 7/8 200061 1/2
3.003 : 2000 65
3 9/i67l/4
3 11/16 7 1/2
33/4 .75/8
37/8 73/4
4 l81/2
501/4 36 1 7/8!2.051 4255 2 4.38 3.41 0.97
523/4J36 1 7/8 2.051 4691 2 4.59 3.41 .18
55 1362 2.302458721/84.793.63 .16
57 1/4 40 2 ;2.302 4512 2 1/8 4.49 3.63 0.86
603/4402 12.302 4913 2 i/s 4.76 3.63 1.13
* Thickness of flange given in table includes raised face.
FORGED AND ROLLED STEEL FLANGES.
211
Forged Steel Flangeslfor Riveted Pipe.
Riveted Pipe Manufacturers' Standard.*
ll
II
£72
0)
T3 g
3 i
£5
Thickness
of Flange.*
•83
|3
•3<2
IS
Diam. of
Bolt Circle.
-2
g£
11
£W
Outside
Diam.
Thickness
of Flange.*
o»
&
0-2
IS
Diam. of
Bolt Circle.
4
5
6
7
8
9
10
j ]
6
8
9
10
11
13
14
J5
5/16 ....
5/16 9/16
5/16 9/16
3/8 9/16
3/8 9/i6
3/8 5/8
3/8 5/8
3/8 11/16
7/16
4
8
8
8
8
8
8
8
12
V/18
7/16
7/16
1/2
1/2
1/2
1/2
1/2
1/2
43/4
5 15/16
6 15/16
7T,,
10
M 1/4
121/4
13 3/8
16
18
20
22
24
26
28
30
32
211/4
%,\
%'<
32
34
36
38
V8 3/4
V8 3/4
5/8 V8
H/16 7/8
11/16 7/8
1
1
12
16
16
16
16
24
28
28
28
V2
5/8
5/8
5/8
V8
3/4
3/4
3/4
3/4
191/4
2H/4
231/8
26
273/4
293/4
313/4
333/4
353/4
12
13
14
15
16
17
18
19
7/16 3/4
7/16 ....
7/16 3/4
9/16 3/4
12
12
12
12
1/2
1/2
1/2
1/2
141/4
15 1/4
161/4
177/16
34
36
40
42
40
42
46
48
H/8
H/8
M/8
28
32
32
36
3/4
3/4
3/4
3/4
373/4
393/4
433/4
453/4
* Flanges for riveted pipe are also made with the outside diameter and
the drilling dimensions the same as those of the A. S. M. E. standard
(page 209) , and with the thickness as given in the second column of fig-
ures under "Thickness of Flange" in the above table.
Curved Forged Steel Flanges are also made for boilers and tanks.
See catalogue of American Spiral Pipe Works, Chicago.
Forged and Rolled Steel Flanges.
Dimensions in Inches. (American Spiral Pipe Works, 1913.)
Standard Companion Flanges.
Standard Shrink Flanges.
"3 DD
•g
•8
-. .
•3
•8
1 .|
T3 PJ
•a a?
1
^3 •
S3 8
-8 a
a
i ,
fd •
. .
|l
OQ
|i
p
|I
n
5w
III
l|
iP
"a^
|1
A
B
C
D
E
A
B
C
D
E
2
6
21/8
5/8
1
31/8
4
9
43/8
15/16
23/i6
53/4
21/2
7
21/2
H/16
1 Vl6
35/8
41/2
91/4
47/8
15/16
21/4
61/8
^
71/3
31/8
3/4
1 1/8
45/16
5
10
57/16
15/16
25/i6
67/8
31/2
81/2
35/8
13/16
13/16
47/8
6
It
61/2
27/ie
77/8
4
9
41/8
15/16
13/16
53/8
7
121/2
71/2
1/16
21/2
9
41/2
91/4
45/8
15/16
5 13/16
8
131/2
81/2
1/8
25/8
10
5
10
51/8
15/16
1 5/16
67/ie
9
15
91/2
1/8
23/4
11 1/8
6
11
I 7/16
7 9/16
10
16
Id 5/8
3/16
3
121/4
7
121/2
7 3/1J
1/16
H/2
85/8
12
19
125/8
1/4
33/8
141/2
8
131/2
1/8
15/8
9 H/16
14
21
137/s
3/8
33/8
157/s
9
15
9 3/i6
1/8
13/4
105/s
15
221/4
147/8
3/8
31/2
167/8
10
16
105/18
3/16
1 7/8
1 1 15/16
16
231/2
157/8
7/16
35/8
18
12
19
125/i6
1/4
21/16
141/8
18
25
177/s
9/16
37/8
201/8
14
21
131/2
13/8
157/16
20
271/2
197/s J
11/16
41/8
22 1/4
212
MATERIALS,
Forged and Rolled Steel Flanges.— Continued.
Extra Heavy Companion Flanges.
Is
iff
233
Outside
Diam.
Js
Thick-
ness.
*o .
J3-^5
•s 3
1*
*8 .
c-a
I*
Nominal
Size, Ins.
Outside
Diam.
.1
IQ
Thick-
ness.
o
£•§
1*
i
#
A
B
C
D
E
A
B
C
D
E
91/8
101/8
113/16
129/ia
145/8
1513/w
17 3/i6
181/4
j*
31/2
4l/2
6
61/2
71/2
81/4
9
10
,o./,
121/2
21/8
21/2
31/8
35/8
41/8
45/8
51/8
63/16
7/8
1/8
1/8
1/4
1/4
H/4
3/8
7/16
9/16
5/8
3/4
13/16
2?/8
33/8
41/16
4H/16
55/16
5 13/16
61/4
6 13/16
77/8
7
8
9
10
12
14
15
16
14
15
16
171/2
20
221/2
£1/2
73/16
83/i6
93/16
105/ie
I25/16
131/2
141/2
151/2
1 5/16
13/8
17/16
H/2
1V8
13/4
1 13/16
17/8
21/16
23/16
21/4
23/8
29/16
2 H/16
2 13/16
31/16
Extra Heavy High Hub Flanges.
Size.
A
B
C
D
E
Size.
A
B
C
D
E
4
10
43/8
I 1/8
31/8
53/4
18
27
177/8
2
5
203/4
" 4 1/2
101/2
47/8
H/4
31/4
61/4
20
291/2
197/g
21/4
5l/2
22i/2
5
11
57/16
H/4
31/4
7
22
3H/2
21/4
51/2
243/4
6
12l/2
61/2
H/4
31/4
7 15/16
24
34
27/16
61/4
27
7
14
71/2
15/16
33/8
.91/8
30
40
27/W 61/4
33
8
15
81/2
13/8
3l/2
105/i6
36
46
2 7/16
61/4
39
9
16
91/2
17/16
35/8
113/8
42
52
27/16 61/4
45
10
17V2
105/g
H/2
33/4
125/s
48
581/4
27/16
61/2
5H/4
11
183/4
115/8
19/16
37/8
135/8
54
641/2
27/16
61/2
571/4
12
20
125/8
15/8
4
143/4
60
703/s
27/16
.61/2
633/8
14
221/2
137/8
13/4
43/8
I63/i6
66
77
27/16
71/2
69l/2
15
23.1/2
147/8
1 13/16
41/2
171/4
72
831/s
27/16
71/2
755/8
16
25
15 7/8 j
17/8
43/4
181/2
The Rockwood Pipe Joint. — Tfle system of flanged joints now in
common use for high pressures, made by slipping a flange over the pipe,
expanding the end of the pipe by rolling or peening, and then facing it in
a lathe, so that when the flanges of two pipes are bolted together the
bearing of the joint is on the ends of the pipes themselves and not on the
flanges, was patented by George I. Rockwood, April 5, 1897, No. 580,058,
and first described in Eng. Rec., July 20, 1895. The joint as made by
different manufacturers is known by various trade names, as Walmanco,
Van Stone, etc.
Matheson Joint and Converse Lock-joint Pipe. — Sizes, external
diameters 2 to 20 in., 22, 24, 26, 28, and 30 in. Kimberley Joint Pipe,
6 to 30 in. These pipes are considerably lighter than standard pipe.
The Converse and Kimberley joints are made with special forms of ex-
ternal hubs, filled and calked with lead. The Matheson joint is also
a lead-packed joint, but the bell or socket is made by expanding one of
the pipes, the end being reinforced by a steel band. The lead required
per joint is less than for other lead- joint pipes of the same diameter.
PIPE FITTINGS.
Dimensions of Standard Cast-Iron Flanged Pipe Fittings, for Pres-
sures up to 125 Lb. per Sq. In. (Adopted March 20, 1914, by a
joint committee of manufacturers and of the Am. Soc. M. E.)
Dimensions in the tables, pages 213 and 214, refer t9 corresponding
letters on the sketches on page 215. For dimensions of flanges
and bolts see Table of Standard Flanges, pages 209 and 210.
213
Standard Cast Iron Flanged Pipe Fittings for Pressures up to 125 lb.
per Sq. In. (see sketches p. 215.)
Size.
Tees, Crosses
and Ells.
Long
Radius
Ells.
45
degree
Ells.
Laterals.
Re-
ducers.
Min.
Thick-
ness of
Metal.
H/4
j*
f>/2
3./2
41/2
6
7
8
9
10
12
14
15
16
18
20
22
24
26
28
30
32
34
36
38
40
42
44
46
48
50
52
54
56
58
60
62
64
66
68
70
72
74
76
78
80
82
84
86
88
90
92
94
96
98
100
A-A
fy
9
10
11
12
13
14
15
16
17
18
20
22
24
28
29
30
33
36
40
44
46
48
50
52
54
56
58
60
62
64
66
68
70
74
78
82
84
88
90
94
96
too
102
106
108
112
116
118
120
124
126
130
134
136
138
142
146
148
A
31/2
33/4
4l/2
51/2
6
61/2
71/2
8
81/2
9
10
11
12
14
g.A
161/2
18
20
22
23
24
25
26
27
28
29
30
31
32
33
34
35
37
39
41
42
44
45
47
48
50
51
53
54
56
58
59
60
62
63
65
67
68
69
71
73
74
B
5
51/2
61/2
73/4
81/2
91/2
101/4
11 V2
123/4
14
151/4
161/2
19
21 1/2
223/4
261/2
IV/2
36l/2
39
4H/2
44
£'/'
5siI/2
56*
61 1/2
64
6V/2
Jl A
76l/2
79
8H/2
84
86 1/2
89
9H/2
94
96l/2
99
101 1/2
104
1061/2
109 .
!!11/2
1161/2
119
!ir/2
!£'/2
C
]3/4
21/4
21/2
3
31/2
4
41/2
51/2
51/2
6
61/2
71/2
71/2
8
8
81/2
91/2
10
11
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
D
JV,
}|V,
13
Hl/2
15
|5./2
18
g*
24
251/2
30
33
341/2
*>/,
43
46
491/2
53
56
59
E
53/4
61/4
8
,r/2
a*
12i/2
131/2
141/2
161/2
171/2
191/2
201/2
2?./,
281/2
30
32
35
371/2
401/2
44
461/2
49
F
13/4
13/4
21/2
21/2
3
3
3
31/2
31/2
41/2
41/2
51/2
6
6
61/2
8
81/2
9
9
91/2
10
G
"6 "
61/2
J.A
9
10
11
M'/2
14
16
17
18
19
20
22
24
26
28
30
32
34
36
38
40
42
44
46
48
50
52
54
56
58
60
62
64
66
68
70
72
74
76
78
80
82
84
86
88
90
92
94
%
98
100
7/16
l^
7/16
MM
7/16
!/!«
7/16
1/2
1/2
1/2
9/16
5/8
5/8
$'
%16
7/8
1/16
1/8
3/16
1/4
5/16
y?
7/16
1/2
9/16
5/8
"/"
8r
' 15/16
21/16
21/8
23/16
21/4
25/16
27/i6
21/2
29/16
25/8
2 H/16
23/4
2 13/16
27/8
2 15/16
31/16
31/8
33/is
31/4
35/ia
33/8
31/2
39/16
35/8
3 11/16
33/4
214
MATERIALS.
Dimensions of American Standard Flanged Reducing Fittings. Short
Body Pattern. (All Dimensions in Inches.)
Long body patterns are used when outlets are larger than those in
table, and have the same dimensions as straight size fittings. All re-
ducing fittings from 1 to 16 in. inclusive have same dimensions as
straight size fittings. The dimensions of reducing fittings are always
regulated by the reduction of the outlet.
18
20
22
24
26
28
30
32
34
56
38
40
42
44
46
48
50
52
54
56
58
Tees, Ells, Crosses.
Laterals.
i
w
~60~
62
64
66
68
70
72
74
76
78
80
82
84
86
88
90
92
94
96
98
100
Tees, Ells,
and Crosses.
J*
Cfl+3
*3
S-o
12
14
15
16
18
18
20
20
22
24
24
26
28
28
30
32
32
34
36
36
38
AA
26
28
28
30
32
32
36
36
38
40
40
44
46
46
48
52
52
54
58
58
62
A
13
14
14
15
16
16
18
18
19
20
20
22
23
23
24
26
26
27
29
29
31
B
N "£
W^
So
a*
9
10
10
12
12
14
15
D
26
28
29
32
35
37
39
E
F
1
V2
o'/2
0
0
H
271/2
291/2
31 1/2
34 i/2
38
40
42
S4^
w5
&
S-8
40
40
42
44
44
46
48
48
50
52
52
54
56
56
58
60
60
62
64
64
66
AA
66
66
68
70
70
74
80
80
84
86
86
88
94
94
96
100
100
104
106
106
110
A
~33
33
34
35
35
37
40
40
42
43
43
44
47
47
48
50
50
52
53
53
55
B
"4?
42
44
45
46
47
48
49
50
52
53
54
56
57
58
61
62
63
64
65
67
17 l/2
18
19
20
11
24
25
26
28
29
30
31
33
34
35
36
37
39
40
25
27
281/2
\Vh
37
39
Extra Heavy American Standard Flanged Reducing Fittings.
Body Pattern. (All Dimensions in Inches.)
Short
1
CO
Tees, Ells and Crosses.
Laterals.
|
c/5
Tees, Ells and Crosses.
ti
05^3
go
^"o
AA
A
K
S-^
.3 Q)
C/253
So
&£
D
E
F
H
II
a*
§3
AA
A
K
18
20
22
24
26
28
30
32
12
14
15
16
18
18
20
20
28
31
33
34
38
38
41
41
14
151/2
161/2
17
19
19
20 l/2
201/2
17
1SV2
gv,
24
251/2
26i/2
9
10
10
12
34
37
40
44
31
34
37
41
3
3
3
3
8'"
39
43
34
36
38
40
42
44
46
48
22
24
24
26
28
28
30
32
44
47
47
50
53
53
55
58
22
231/2
•§>*
2$
i172
28
291/2
301/2
31 1/2
331/2
341/2
351/2
37i/2
Standard Brass Flanges as adopted Sept. 17, 1913, by the Committee
of manufacturers on the standardization of Valves and Fittings, to be-
come effective Jan. 1, 1914 are listed on page 215. The bolt holes for
these flanges are to be drilled i/ie in. greater than the bolt diameter for
sizes 2 in. and smaller, and % in. greater than the bolt diameter for
sizes 2l/2 in. and larger. The flanges have smooth, plain faces, and when
coupled to extra heavy iron flanges, the latter should have the raised
surface faced off.
STANDARD BRASS FLANGES.
215
Side Outlet
Tee
STEAIGHT SIZE FITTINGS.
J±H 'M**:
Laterals
REDUCING FITTINGS.
Jfoducers
The dimensions on these sketches refer to the corresponding letters
in the tables of flanged fittings, pages 213 and 214, and also to the
reference letters in the tables of screwed fittings, page 216.
Standard Brass Flanges.
Standard — For Pressures up
to 125 Lb.
Extra Heavy — For Pressures
up to 250 Lb.
Size,
In.
Diam.,
In.
Thick-
ness,
In.
Bolt
Circle ,
In.
No.
of
Bolts.
Size
of
Bolts,
In.
Diam.,
In.
Thick-
ness,
In.
Bolt
Circle,
In.
No.
of
Bolts.
Size
of
Bolts,
In.
V4&3/8
2V2
9/32
1 n/16
4
3/8
3
3/8
2
4
7/16
1/2
3/4
3
3V2
5/16
H/32
2V8
2V2
4
4
3/8
3/8
jv,
13/32
7/16
23/8
27/8
4
4
'£
1
4
3/8
3
4
7/16
41/2
V2
3V4
4
V2
H/4
4V2
1V32
33/8
4
7/16
5
n/32
33/4
4
V2
H/2
5
Vl6
37/8
4
V2
6
9/16
4V2
4
5/8
2
6
V2
43/4
4
5/8
6V2
5/8
5
4
5/8
2V2
7
9/16
5V2
4
5/8
7V2
n/16
57/8
4
3/4
3
?V2
5/8
6
4
'5/8
8V4
3/4
6Vs
8
3/4
3V2
81/2
H/16
7
4
5/8
9
13/16
7V4
8
3/4
4
9
n/16
7V2
8
5/8
10
7/8
7V8
8
3/4
4V2
9V4
23/32
73/4
8
3/4
10V2
7/8
8V2
8
3/4
5
10
3/4
8V2
8
3/4
11
15/16
9V4
8
3/4
6
11
.13/16
9i/2
8
3/4
12V2
105/8
12
3/4
7
12V2
7/8
10:V4
8
3/4
14
Vl6
11 7/8
12
7/8
8
131/2
16/16
11 3/4
8
3/4
15
1/8
13
12
7/8
9
15
15/16
131/4
12
3/4
16i/4
1/8
14
12
1
10
16
141/4
12
7/8
17V2
3/16
15V4
16
1
12
19
1Vl6
17
12
7/8
201/2
V4
173/4
16
IV8
'216
MATERIALS.
Dimensions of Screwed Cast Iron and Malleable Pipe Fittings, For
Steam and Water. (Crane Co., Chicago, 1914.)
R = regular fitting; E.H. ~ extra heavy fitting. For meaning of
dimensions see sketches p. 215. Dimensions in inches.
.
Long
51*" Tee, Cross, Ell.
Rad.
45 Deg. Ell.
Lateral.
Reducer.*
wng.
Ell.
Dimension. A
B
C
D
E
G
Size,
Ins.
Cast Iron.
Mall.
Mall.
Cast Iron.
Mall.
C.I.
C.I.
C.I.
Mall.
R.
E. H.
E.H.
E. H.
R.
E.H.
E.H.
R.
R.
R.
E. H.
1/4
13/16
1 i/ifi
3/4
3/4
3/8
15/ie
1 1/4
13/16
7/8
1/2
1 1/8
1 1/2
7/8
1 '
21/2
1 7/8
3/4
15/16
13/4
1
U/8
3
21/4
1 H/16
1
1 7/16
2"
2
2 1/2
U/8
13/8"
15/16
31/2
23/4
2
1 1/4
13/4
21/4
21/4
3
15/16
H/2
41/4
31/4
21/8 '
23/8
1 V2
1 15/16
29/16
31/2
17/16
15/8
1 H/16
47/8
313/16
21/4
2 H/16
2
21/4
3
3
4
1 15/16
2
53/4
41/2
27/16
23/16
2l/2
2 H/16
31/2
31/2
43/4
1 IS/16
21/4
21/4
61/4
53/16
2 H/16
3
31/8
41/8
41/8
51/2
2 3/16
21/2
21/2
77/8
61/8
2 15/16
3l/2
37/16
33/4
4H/16
51/8
45/8
51/8
61/423/8
7 25/8
"29/ie
23/4
25/8
2 13/16
87/8
93/4
67/8
75/8
31/8
33/8
41/2
41/16
51/2
55/8
73/4!213/i63
115/8
91/4
35/8
5
47/16
61/8
61/4
31/16 35/ie
115/8
91/t
37/8
6
51/8
71/4
71/4
91/2
37/16 133/4
137/16
103/4
43/8
7
5 13/16
81/8
37/8
4
151/4
121/4
4 13/16
8
61/2
91/8
41/4
43/4
1615/i6
135/8
51/4
9
10
73/16
77/8
4H/16
53/16
47/8 '
20H/16
163/4
163/4
5 H/16
63/ie
12
91/4
133/8
6
51/2
1
195/s
71/8
* The reducers are for reducing from the size of pipe given to the
next smaller size. In addition, malleable reducers are listed for 1 % X
Vi,^lA X 1, 1 Yi X Vi, 2 x 1, 2 X Vi- The dimension G given in the
table is the same for these special fittings as for the regular fittings
given above.
Strength of Pipe Fittings. — To determine the actual bursting strength
of cast iron fittings, and also to deter